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0. INTRODUCTION AND MOTIVATION

Complex geometry is the study of complex manifolds, which are the holomorphic version of smooth
manifolds. These locally look like open subsets of n, with holomorphic transition functions.

One dimensional complex manifolds are Riemann surfaces. Every (smooth) projective variety is a
complex manifold. A main result of this course gives a partial converse to this (and on the first
example sheet we shall see an example of a complex manifold which is not algebraic).

Complex tools are often used to study projective varieties (Hodge conjecture, Moduli theory). There
are also lots of questions which are also interesting in their own right. Projective surfaces were
classified in 1916. The classification of compact complex surfaces is still open (most recent progress
was in 2005).

0.1. Several Complex Variables.

Definition 0.1. Let U ⊂ n be open. Then a smooth function f : U →  is holomorphic if it
is holomorphic in each variable (i.e. fix all zi but one, then consider f as a function of that one
z j ∈ ).

A function F : U → m is holomorphic if each coordinate function is holomorphic.

Remark: There are equivalent definitions of holomorphicity in terms of existence of power series.

Now identify n ∼= 2n via (x1+ i y1, . . . , xn+ i yn) → (x1, y1, . . . , xn, yn). Then if we write f = u+ iv
in terms of its real and imaginary parts, basic complex analysis implies:

f is holomorphic ⇐⇒ ∂ u
∂ x j

=
∂ v
∂ y j

and
∂ u
∂ y j

= − ∂ v
∂ x j

∀ j

(i..e the Cauchy-Riemann conditions hold). More conveniently, if we define

∂

∂ zi
=

1
2


∂

∂ x j
− i
∂

∂ y j


and

∂

∂ z j
=

1
2


∂

∂ x j
+ i
∂

∂ y j



then

f is holomorphic ⇐⇒ ∂ f
∂ z j
= 0 ∀ j.

Proposition 0.1 (Maximum Principle). Let U ⊂ n be open and connected. Suppose f is holo-
morphic on U, and that D is open and bounded with D ⊂ U. Then:

max
D
| f |=max

∂ D
| f |.

Proof. Repeated application of the single variable maximum principle from complex analysis. □
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So in particular the maximum principle tells us that if | f | attains its maximum at an interior point,
then f must be constant.

Proposition 0.2 (Identity Principle). Suppose U ⊂ n is open and connected, with f : U → 
holomorphic. Suppose f vanishes on an open subset of U. Then f ≡ 0.

Proof. Repeated application of the single variable identity principle from complex analysis. □
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1. COMPLEX MANIFOLDS

Let X be a second countable, Hausdorff, topological space. We always assume that X is connected
(e.g. a smooth manifold).

Definition 1.1. A holomorphic atlas for X is a collection of charts (Uα,ϕα) with ϕα : Uα →
ϕα(Uα) ⊂ n homeomorphisms such that:

(i) X = ∪αUα is an open cover

(ii) The transition maps ϕα ◦ϕ−1
β

are holomorphic.

Definition 1.2. Two holomorphic atlases (Uα,ϕα)α, (Ũβ , ϕ̃β ) are equivalent if ϕα◦ϕ̃−1
β

are holo-
morphic for all α,β .

i.e. if their union is also an atlas.

Definition 1.3. A complex manifold is a topological space as above with an equivalence class of
holomorphic atlases (i.e. a maximal atlas).

Such an equivalence class is called a complex structure.

Example 1.1. n is a complex manifold. Moreover any open subset of n is a complex manifold,
e.g. the open unit disc ∆ = {z ∈  : |z|< 1}.

Example 1.2 (Complex Projective Space). Consider (complex) projective space n. As a set this
is the linear 1-dimensional subspaces of n+1. A point in n is represented by [z0 : · · · : zn].

A holomorphic atlas is given by Ui = {zi ∕= 0} with ϕi defined by:

ϕi([z0 : · · · : zn]) :=


z0

zi
, . . . ,
zi

zi
, . . . ,

zn

zi



where as usual a ‘hat’ means we omit that term. One can then check that the transition functions are
holomorphic and so n is a complex manifold. Moreover we can see that n is a compact complex
manifold.

Definition 1.4. A smooth function f : X →  (X a complex manifold) is said to be holomorphic
if f ◦ϕ−1 : ϕ(U)→  is holomorphic for all charts (U ,ϕ).
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Definition 1.5. A smooth map F : X → Y between complex manifolds X , Y is holomorphic if for
all charts (U ,ϕ) for X and (V,ψ) for Y , the map ψ ◦ F ◦ϕ−1 is holomorphic.

We see that F is biholomorphic if it has a holomorphic inverse.

Exercise: (Extension of maximum principle). If X is compact, show that any holomorphic function
on X is constant.

Thus compact complex manifolds cannot be embedded into m for any m. Contrast this with the
smooth manifold case, where Whitney’s embedding theorem tells us that we can always embed
smooth manifolds into some m. So complex manifold theory is very different.

Exercise: (Extension of Identity Principle). If X →  is holomorphic and vanishes on an open set in
X , then f ≡ 0.

Thus there are no holomorphic analogues of bump functions or partitions of unity in complex man-
ifolds, again making them very different to smooth manifold theory.

Definition 1.6. Let Y ⊂ X be a smooth submanifold of dimension 2k < 2n= dim(X ). Then we say
that Y is a closed complex submanifold if ∃ a holomorphic atlas for X such that ϕα : Uα ∩ Y →
ϕ(Uα)∩k, where k ⊂ n is identified by (z1, . . . , zk, 0, . . . , 0).

Exercise: Show that a closed complex submanifold is naturally a complex manifold.

Definition 1.7. We say a complex manifold X is projective if it is biholomorphic to a compact
closed complex submanifold of m for some m.

Theorem 1.1 (Chow). A projective complex manifold is actually a projective variety.

Proof. Later. □

Recall that a variety is the vanishing set of some polynomial equations over some space. So a pro-
jective variety is the vanishing set in m of some homogeneous polynomial equations (as in m).

In the example sheet we will see an example of a compact complex manifold which is not projective.

1.1. Almost Complex Structures.

Before we work globally on manifolds we need to understand how to work on them locally, and thus
we need to consider the linear space case first.
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So let V be a real vector space.

Definition 1.8. A linear map J : V → V with J2 = −id is called a complex structure.

On 2n, the endomorphism (x1, y1, . . . , xn, yn)
J→ (−y1, x1, . . . ,−yn, xn) is called the standard com-

plex structure (this just comes from multiplication by i, as x j + i y j →×i
−y j + i x j).

Now as J2 = −id for any complex structure, the eigenvalues are ±i, and so since V is real there are
no (real) eigenspaces. To get around this, we consider the complexification of V , defined by

V := V ⊗ .

Then J extends to J : V→ V with J2 = −id via:

J(v ⊗ z) := J(v)⊗ z.

So let V 1,0 and V 0,1 denote the eigenspaces in V of ±i respectively.

Lemma 1.1. For V a real vector space and J a complex structure on V , we have:

(i) V = V 1,0 ⊗ V 0,1.

(ii) V 1,0 = V 0,1, where (·) denotes the conjugate.

Proof. (i): For v ∈ V we can write:

v =
1
2
(v − iJ(v))
  

∈V 1,0

+
1
2
(v + iJ(v))
  

∈V 0,1

and so V = V 1,0 + V 0,1. But then clearly the eigenspaces are disjoint (except for 0) and so V =
V 1,0 ⊕ V 0,1.

(ii): Follows from the decomposition in (i), as taking complex conjugates of V 1,0 part gives something
in the V 0,1 part.

□

Now to look at the case of manifolds:

Definition 1.9. Let X be a smooth manifold. Then an almost complex structure (a.c.s) on X
is a bundle isomorphism J : T X → T X with J2 = −id (i.e. Jx : Tx X → Tx X for all x ∈ X with
J2

x = −idx).

One can complexify T X to obtain (T X ) = T X ⊗  (this is really a tensor product of two vector
bundles, where by  we mean the trivial bundle with fibre  at each point, i.e. (T X ⊗C)p = TpX ⊗
for all p).
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So each fibre of the bundle (T X )→ X is a complex vector space. We call (T X ) the complexified
tangent bundle.

Then as we saw above, we can split each fibre up into its eigenvalue decomposition, and so we see
that (T X ) splits as a direct sum:

(T X ) ∼= (T X )(1,0) ⊕ (T X )(0,1).

Fibrewise this is exactly as above. To obtain this as vector bundles though, one can use, e.g.

(T X )(1,0) = ker(J − i · id) and (T X )(0,1) = ker(J + i · id).
To see that complex manifolds naturally have an a.c.s, we need the following:

Exercise: [See Example Sheet 1]. Let U , V ⊂ n be open and f : U → V be smooth. Then:

f is holomorphic ⇐⇒ d f is -linear.

Now on T2n there is a natural a.c.s, denoted Jst (“st” for “standard”)m coming from the complex
structure on 2n we saw before.

So let X be a complex manifold. Then if U ⊂ X is a chart, ϕ : U → ϕ(U) ⊂ n ∼= 2n is a biholomor-
phism and so the differential of ϕ gives a bundle map J : T U → T U defined by: J := dϕ−1 ◦ Jst ◦dϕ.

So we have defined a local a.c.s on a complex manifold (just by simply pulling the one on 2n back).
To see that we can patch these local a.c.s’s together to give an a.c.s on all of X , we just need to check
that the above local definition is independent of the choice of chart.

Proposition 1.1. The a.c.s J defined above is independent of the choice of (holomorphic) chart,
and thus gives an a.c.s on X .

Proof. Suppose ϕ,ψ are charts around the same point. What we need to show is that:

dϕ−1 ◦ Jst ◦ dϕ = dψ−1 ◦ Jst ◦ dψ i.e. d

(ϕ ◦ψ−1)−1

◦ Jst ◦ d

ϕ ◦ψ−1

= Jst.

Now ϕ ◦ψ−1 is a holomorphic map between open subsets of n, and so d

(ϕ ◦ψ−1)


commutes
with Jst

(i). So thus the above equality does hold, and so we are done.

□

Remark: There are lots of a.c.s’s that do not arise from a complex manifold structure. The a.c.s’s
that do arise from a complex structure are called integrable. For example, S6 admits an a.c.s which
is not integrable, i.e. is not induced by a complex structure on S6. It is still an open problem to
determine whether or not S6 admits a complex structure or not.

A general result in complex manifold theory gives a condition for when an a.c.s is integrable:

An a.c.s is integrable ⇐⇒ The Nijenhuis tensor vanishes.

(i)This is seen from the proof of the above exercise on f being holomorphic iff d f is -linear. It also shows (or at least
a very similar argument) that f is holomorphic iff f commutes with Jst, i.e. d f ◦ J = J ◦ d f .
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Definition 1.10. T X (1,0) is called the holomorphic tangent bundle of X.

Now if V is a real vector space, and if J is a complex structure on V , then one obtains a complex
structure on V ∗ via:

(J∗α)(v) := α(J(v)) ∀α ∈ V ∗.

Then analogously to what we have seen above one obtains a decomposition of the complexified
cotangent bundle:

(T ∗X ) ∼= T ∗X (1,0) ⊕ T ∗X (0,1)

where (T ∗X ) := T ∗X ⊗. So locally if ϕ : U → n is a chart then we say that z j = x j+ i y j are local
coordinates in U (where ϕ = (z1, . . . , zn)).

In these local coordinates, we can then see (for the complexified tangent bundle, as we have a local
basis

∂
∂ x j

, ∂∂ y j


j
):

J


∂

∂ x j


=
∂

∂ y j
and J


∂

∂ y j


= − ∂
∂ x j

(from look back at the form of the standard complex structure on 2n to see this), and then for the
complexified cotangent bundle this gives (just using the above formula):

J∗(dx j) = −dy j and J(dy j) = dx j .

[These just come from the usual differential geometry calculations, e.g.

J


∂

∂ x j


=
∂

∂ x j
(J) =

∂

∂ x j
(−y1, x1, . . . ,−yn, xn) = (0, . . . , 0, 1

y j place

, 0, . . . , 0) =
∂

∂ y j

and simiarly for J

∂
∂ y j


. Then the dual expressions come from the definition of J∗ and the fact that

{dx j , dy j} j is the dual basis.]

So we know what the a.c.s looks like in local coordinates.

Definition 1.11. We define:

dz j := dx j + idy j and dz j = dx j − idy j

as well as
∂

∂ z j
=

1
2


∂

∂ x j
− ∂

∂ y j


and

∂

∂ z j
=

1
2


∂

∂ x j
+ i
∂

∂ y j


.

Then dz j , dz j are sections of (T ∗X ) and ∂
∂ z j

, ∂
∂ z j

are sections of (T X ), which we dual to one another

in the usual sense of differential geometry.

Note: We can readily check that:

J(dz j) = idz j , J(dz j) = −idz j , J


∂

∂ z j


= i
∂

∂ z j
, J


∂

∂ z j


= −i

∂

∂ z j
.
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We see from this that the dz j form a local frame/basis for T ∗X (1,0) and similarly the dz j form a local
frame for T ∗X (0,1). Also exactly the same holds for T X (1,0), T X (0,1) with the ∂

∂ z j
, ∂
∂ z j

.

Now if f : X →  is a smooth function with f = u + iv, then d f = du + idv is a smooth section
of (T ∗X ) ∼= T ∗X (1,0) ⊕ T ∗X (0,1). Now if we write p1, p2 for the two projections from (T ∗X ) onto
T ∗X (1,0) and T ∗X (0,1) respectively, then we define the del and del-bar operators (∂, ∂) by

∂ f := p1(d f ) and ∂ := p2(d f ).

In a local frame just as we expect we have

d f =


j

∂ f
∂ z j
· dz j

  
=∂ f

+


j

∂ f
∂ z j
· dz j

  
=∂ f

= ∂ f + ∂ f

and so on smooth functions, d= ∂ + ∂ . Thus we see

f is holomorphic ⇐⇒ ∂ f = 0.

This is all we need for 1-forms, so now we can do the same for higher degree forms. Write

Λp,q(T ∗X ) := Λp

T ∗X (1,0)

⊗Λq

T ∗X (0,1)


where Λp denotes the p’th exterior power.

Definition 1.12. A section of Λp,q(T ∗X ) is called a (p,q)-form.

Locally a (p, q)-form looks like:


J ,L

fJ Ldz j1 ∧ · · ·∧ dz jp ∧ dz l1 ∧ · · ·∧ dz lq

where J = ( j1, . . . , jp), L = (l1, . . . , lq) and the sum is over all such multi-indices. Here the fJ L are
just smooth functions. Thus, e.g. zdz is a section of (T ∗X )(1,0), despite the coefficient not being
holomorphic. Thus we do not require the coefficients in a (p, q)-form to be holomorphic or anti-
holomorphic, they are just smooth functions.

Definition 1.13. We write k
(U) for the smooth sections of Λk


(T ∗X )


over U ⊂ X , i.e. com-
plexified k-forms.

We also write p,q
 (U) for the smooth sections of Λp,q(U).

So 0,0
 (U) consists of the smooth -valued functions on U . We often omit the subscript  as it is

understood.

Lemma 1.2 (Relation between (p, q)-forms and k-forms).

10
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(i) There is a natural identification

Λk

(T ∗X )
∼=


p,q: p+q=k

Λp,q(T ∗X ).

So in particular the same is true for the space of sections:

 k
(U)
∼=


p+q=k

 p,q
 (U).

(ii) If α ∈ p,q
 (U), β ∈

p′,q′

 (U), then α∧ β ∈ p+p′,q+q′

 (U).

Proof. Fibrewise this is just linear algebra. One can then use the local frame/coordinates to obtain
the result on bundles.

□

So now we are in a good position to define a cohomology theory on complex manifolds.

1.2. Dolbeault Cohomology.

Denote by d : k
(U)→ k+1

 (U) the usual exterior derivative.

Definition 1.14. Define the del operator on (p, q)-forms ∂ : p,q
 (U)→

p+1,q
 (U) by:

∂ = π1 ◦ d

i.e. taking d composed with the projection onto (p + 1, q)-closed forms π1 :  p+q+1
 (U) →

 p+1,q
 (U).

Similarly define the del-bar operator on (p, q)-forms ∂ : p,q
 (U)→

p,q+1
 (U) by:

∂ = π2 ◦ d

for π2 the projection π2 : p+q+1
 (U)→ p,q+1

 (U).

Note: These projection operators are well-defined by Lemma 1.2.

Definition 1.15. The (p,q)-Dolbeault cohomology of X is given by:

H p,q

∂
(X ) :=

ker

∂ : p,q

 (X )→
p,q+1
 (X )


Image

∂ : p,q−1

 (X )→ p,q
 (X )
 .
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To check that this is well-defined we need to see that ∂
2
= 0. Note first that, locally, if

α=


J ,L

fJ Ldz j1 ∧ · · ·∧ dz jp ∧ dz l1 ∧ · · ·∧ dz lq

then

dα=


J ,L



r

∂ f
∂ zr

dzr ∧ dz j1 ∧ · · ·∧ dz lq

  
=∂ α

+


J ,L



r

∂ f
∂ zr

dzr ∧ dz j1 ∧ · · ·∧ dz lq

  
∂ α

where we have split the sum up into two parts, depending on whether we get an extra dzr or dzr .

From this we can establish:

Lemma 1.3 (Properties of ∂ ,∂ for complex manifolds).

(i) d= ∂ + ∂ .

(ii) ∂ 2 = 0= ∂
2

and ∂ ∂ = −∂ ∂ .

(iii) If α ∈ p,q
 (U), β ∈

p′,q′

 (U), then:

∂ (α∧ β) = ∂ α∧ β + (−1)p+qα∧ dβ

∂ (α∧ β) = ∂ α∧ β + (−1)p+qα∧ ∂ β .

Proof. (i): Follows from the local coordinate expressions as defined and used above.

(ii): Since d= ∂ + ∂ and d2 = 0 we have

0= d2 = (∂ + ∂ )(∂ + ∂ ) = ∂ 2 + ∂ ∂ + ∂ ∂ + ∂
2
.

But note that ∂ 2 maps into p+2,q, ∂ ∂ and ∂ ∂ map into p+1,q+1 and ∂
2

maps into p,q+2. Since
all of these spaces are disjoint (except for 0), the above equality can only be true if we have ∂ 2 = 0,

∂
2
= 0 and ∂ ∂ + ∂ ∂ = 0 separately, which gives the result.

(iii): This simply follows from d(α∧ β) = dα∧ β + (−1)p+qα∧ dβ , which is because the total rank
of α is p+ q.

□

Thus since ∂
2
= 0 this tells us that


 p,
 (X ),∂


is a cochain complex for each p, and so the (p, q)-
Dolbeault cohomology groups are well-defined. Note that they are also vector spaces.

Remark: One could make an analogous definition using ∂ instead of ∂ . However the information
would be equivalent just by complex conjugating. We tend to work with ∂ simply because we like
holomorphic things, and for smooth functions f we know: f ∈ ker(∂ ) ⇔ f is holomorphic.
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Recall: In differential geometry we define the de Rham cohomology

H i
dR(X ;) :=

ker

d : i

(X )→ i+1
 (X )


Image

d : i−1

 (X )→ i
(X )
 .

One similarly defines the de Rham cohomology for the complexification:

H i
dR(X ;) :=

ker

d : i

(X )→ i+1
 (X )


Image

d : i−1

 (X )→ i
(X )


∼= H i
dR(X ;)⊗.

Much of this course will prove the Hodge decomposition for a certain class of compact complex
manifolds, which includes projective varieties. It says that:

H i
dR(X ;)∼=


p+q=k

H p,q

∂
(X )

(note that this is for the complexified de Rham cohomology). This result is not true for general
complex manifolds (e.g. the Hopf surface).

Exercise: If f : X → Y is holomorphic, show that f induces a map

f ∗ : H p,q

∂
(Y )→ H p,q

∂
(X )

by pullback.

Example 1.3 (Motivation for why we might care about Dolbeault cohomology - The Mittag-L-
effler Problem).

Let S be a Riemann surface (i.e. a one-dimensional complex manifold). Then a principal part
at x ∈ S is a Laurent series of the form

n
k=1 akz−k, with z a local coordinate about x in S. The

Mittag-Leffler problem asks:

“Given points x1, . . . , xn ∈ S and principal parts P1, . . . , Pn, is there a meromorphic function on S
with principal part Pi at x i for all i?”

(By meromorphic function on S we mean a holomorphic map S→ 1 of complex manifolds, or just
a locally meromorphic map on S in the usual sense of complex analysis.)

To do this, take local solutions fi at x i defined on Ui (defined by the principal parts) and take a
smooth partition of unity (ρi)i subordinate to the (Ui)i . Then we know

n
j=1ρ j f j is smooth on

S\{x1, . . . , xn}, with the desired local expression at each x i (since ρi ≡ 1 about x i whilst all others
are 0). We need to know if this is holomorphic on S\{x1, . . . , xn} though.

A calculation then shows that g = ∂


j ρ j f j


extends to a smooth (0, 1)-form on S. Clearly

∂ g = 0 as ∂
2
= 0, and so [g] ∈ H0,1

∂
(S). So suppose H0,1

∂
(S) = 0. Then this implies ∃ a smooth

function h with ∂ h = g, and so if we define f :=


j ρ j f j − h, then ∂ f = 0, and so f solves the
Mittag-Leffler problem.

13
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It turns out that this condition is an iff, i.e.

We can solve the Mittag-Leffler problem on S ⇐⇒ H(0,1)
∂
(S) = 0.

The converse implication requires knowledge of sheaf cohomology, which we will study shortly.

1.3. The ∂ -Poincaré Lemma.

Recall that if X is a contractible smooth manifold, then H i
dR(X ;) = 0 for i > 0. We will show that

the same holds for H p,q

∂
. In particular we will show that if P = {z = (z1, . . . , zn) : |zi | < ri ∀i} ⊂ n

is a polydisc (with ri ∈ (0,∞] for all i, allowed to be infinte), then H p,q

∂
(P) = 0 for all p, q with

p+ q > 0.

First we need the following generalisation of Cauchy’s integral theorem for smooth functions (not
necessarily holomorphic):

Theorem 1.2 (Cauchy’s Integral Theorem). Let D = Dr(a) ⊂  be a disc, and let f ∈ C∞(D) be
smooth. Let z ∈ D. Then:

f (z) =
1

2πi



∂ D

f (w)
w− z

dw+
1

2πi



D

∂ f
∂ w
· dw∧ dw

w− z
.

Note: Thus we see an extra term arises from the usual Cauchy integral formula if f is not holomor-
phic. If f is holomorphic then the extra term vanishes, since then ∂ f

∂ w = 0, and we are just left with
the usual Cauchy integral formula.

Proof. Let D = D(z), and let η = 1
2πi ·

f (w)
w−z dw ∈ 1

(D\D). Then

dη = (∂ + ∂ )η = ∂ η = − 1
2πi
· ∂ f
∂ w
(w) · dw∧ dw

w− z

since for the ∂ term we end up with dw∧ dw= 0. So by Stoke’s theorem:

(‡)
1

2πi



∂ D

f (w)
w− z

dw=
1

2πi



∂ D

f (w)
w− z

dw+
1

2πi



D\D

∂ f
∂ w
· dw∧ dw

w− z

since ∂ (D\D) = ∂ D−∂ D, i.e. the inner boundary has a negative orientation and so we pick up an
extra sign.

We first show that

∂ D

f (w)
w−z dw → f (z) as  → 0. To see this we do the usual thing and change

variables to polar coordinates: set w− z = reiθ , so that

1
2πi



∂ D

f (w)
w− z

dw=
1

2π

 2π

0

f (z + reiθ ) dθ → f (z) as → 0

as f is smooth.

14
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Now as dw∧ dw= 2irdr ∧ dθ , we see

∂ f
∂ w
(w) · dw∧ dw

w− z

= 2


∂ f
∂ w
· dr ∧ dθ

≤ C |dr ∧ dθ |

since f is smooth and so its derivative is bounded here. So hence


D

∂ f (w)
∂ w
· dw∧ dw

w− z
→ 0 as → 0.

So thus as


D\D(· · · ) =


D(· · · )−


D
(· · · ), taking → 0 in (‡) gives the result.

□

Theorem 1.3 (∂ -Poincaré Lemma in One Variable). Let D = Dr(a) ⊂  be a disc (can be infinite
radius) and let g ∈ C∞(D). Then:

f (z) :=
1

2πi



D

g(w)
w− z

dw∧ dw

is a smooth function, i.e. f ∈ C∞(D), and ∂ f
∂ z = g(z).

Proof. We first note that we can reduce to the case where g has compact support, using a partition
of unity/bump functions. So wlog assume g has compact support.

Now take z0 ∈ D and let  > 0 be such that D2 := D2(z0) ⊊ D. So using a partition of unity for the
cover of D given by {D\D, D2}, we may write

g(z) = g1(z) + g2(z)

where g1 vanishes outside of D2 and g2 vanishes on D (i.e. g = ρ1 g + ρ2 g for an appropriate
partition of unity ρ1,ρ2). In particular we see g ≡ g1 on D.

So define

f2(z) :=
1

2πi



D

g2(w)
w− z

dw∧ dw.

Then f2(z) is smooth on D as g2 vanishes on D, and so for each z ∈ D, g2 vanishes near z and
so we avoid the pole in the integrand. This smoothness allows us to differentiate under the integral
sign, and so we see

∂ f2
∂ z
(z) =

1
2πi



D

∂

∂ z


g2(w)
w− z



  
=0 as no z terms as holomorphic

dw∧ dw= 0

(where the integrand is holomorphic here as again g2 vanishes near the pole). Thus we see f2 won’t
effect the derivative we are interested in.

Now as g1(z) has compact support, we can write

1
2πi



D

g1(w)
w− z

dw∧ dw=
1

2πi





g1(w)
w− z

dw∧ dw

15
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as g1 ≡ 0 outside D. So setting w− z = u we get

=
1

2πi





g1(u+ z)
u

du∧ du= − 1
π




g1(z + reiθ )e−iθ dr ∧ dθ =: f1(z)

where we have changed to polar coordinates in the last integral. From this definition we see that
f is C∞(D), and so we can differentiate under the integral sign (differentiating the last expression
w.r.t z, then using the chain rule on ∂ g

∂ z to change back to w and then working the change of variables
back through) to see

∂ f1
∂ z
(z) =





∂ g1(w)
∂ w

· dw∧ dw
w− z

.

So by Cauchy’s integral formula (Theorem 1.2) we get

g1(z) =
1

2πi



∂ D

g1(w)
w− z

dw

  
=0 as g1 = 0 outside D and so in particular on ∂ D

+

what we want above  
1

2πi



D

∂ g1(w)
∂ w

· dw∧ dw
w− z

=
∂ f1
∂ z
(z).

So setting f = f1 + f2, we get ∂ f
∂ z = g1(z) = g(z) for z ∈ D, and f is given by the correct formula

here.

So this works on D = D(z0) But then as z0 ∈ D was arbitrary, this works for every point in D
(with the same formula for f as it independent of z0 so agrees on overlaps of different D(z′0) when
patching together) and so we are done.

□

Thus using the ∂ -Poincaré lemma, if α = gdz ∈  0,1
 (D) is simple, then defining f in terms of g as

in the ∂ -Poincaré lemma we have ∂ f = α.

To simplify things we use multi-index notation, i.e. if I = {I1, . . . , Ik}, then

dzI = dzI1
∧ · · ·∧ dzIk

, fI = fI1,...,Ik
, and

∂

∂ zI
=

∂ k

∂ zI1
· · ·∂ zIk

.

We write |I |= k for such a multi-index I .

Lemma 1.4. Let U ⊂ n be open, and let B, B′ be bounded polydiscs with B ⊊ B′ ⊂ U. Then for
any multi-indices I , J, ∃ a constant CI J such that, for all u holomorphic in U,

∂

∂ zI

∂

∂ zJ
u


C0(B)
≤ CI JuC0(B′)

where  · C0(B) is the supremum norm.

Proof. This follows from the multivariate Cauchy integral formula in the same way as the one variable
case (and the multivariate Cauchy integral formula follows easily from the single variable version).

□
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Lemma 1.4 simply tells us that we can bound all derivatives on a smaller ball by just u itself.

Corollary 1.1. Let (uk)k be a sequence of holomorphic functions on U. Suppose uk → u locally
uniformly (i.e. uniformly on all compact subsets of U). Then u is holomorphic.

Proof. By applying Lemma 1.4 we see that all derivatives of the uk converge uniformly (as Lemma
1.4 gives that they are uniformly Cauchy), and thus u must be smooth. But then applying Lemma
1.4 again we see that

∂ uk

∂ z j
→ ∂ u
∂ z j

uniformly, and so as ∂ uk
∂ z j
= 0 for all k, j (as the uk are holomorphic), we see that ∂ u

∂ z j
= 0 for all j, i.e.

∂ u= 0. So u is holomorphic.

□

Theorem 1.4 (The ∂ -Poincaré Lemma (proof due to Grothendieck)). Let P = Pr(a) = {z :
|zi − ai | < ri ∀i} ⊂ n be a polydisc with ri ∈ (0,∞]. Then for all q > 0, we have H p,q

∂
(P) = 0,

i.e.
if ∂ω = 0, then ∃ψ with ∂ψ =ω.

Proof. We first reduce to the p = 0 case. Indeed, if w ∈ p,q
 (P) is closed, i.e. ∂ w= 0, then we may

write
w=


|I |=p

ϕI ∧ dzI

with ϕI ∈ 0,q
 (U) satisfying ∂ ϕI = 0. Hence if we can findψI with ∂ψI = ϕI , then we would have

∂



|I |=p

ψI ∧ dzI


= w

and so we would be done. Thus we can wlog assume p = 0. The proof is now in two steps. Assume
∂ w= 0 throughout.

Step 1: Let w ∈  0,q
 (P) be closed. We first show that if P ′ = Ps(a) with s < r (all

si in particular are finite) then we can find ψ ∈ 0,q−1
 (P ′) with ∂ψ = w|P ′

To see this, write w =

|I |=q wIdz I , with the wI smooth functions. Let us say w ≡ 0 modulo dz1,

. . .,dzk if wI = 0 unless I ⊂ {1, . . . , k}. We shall prove that if w ≡ 0 modulo dz1, . . . , dzk, then
∃ψ ∈ 0,q−1

 (P ′) such that w−∂ψ ≡ 0 modulo dz1, . . . , dzk−1. Then by induction (as the k = n case
being vacuously true for any w), this will prove Step 1.

So suppose w ≡ 0 modulo dz1, . . . , dzk, and write w = w1 ∧ dzk + w2, with w2 ≡ 0 modulo
dz1, . . . , dzk−1 (i.e. just take all terms in w involving dzk and group them together). So we have/can
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write
w1 =


|I |=q, k∈I

wIdz I\{k}

as we have removed dzk. Then since ∂ w= 0, we have

()
∂ wI

∂ z l
= 0 for l ∕= k.

Now set ψ = (−1)k−1


I :k∈I ψIdz I\{k}, where

ψI :=
1

2πi



|ζ|≤sk

wI (z1, . . . , zk−1,ζ, zk+1, . . . , zn) ·
dζ∧ dζ
ζ− zk

.

Then ∂ψI
∂ zk
= wI by the ∂ -Poincaré lemma in one variable, and for l ∕= k,

∂ψI

∂ z l
=

1
2πi



|ζ|≤sk

∂ wI

∂ z l
(z1, . . . , zk−1,ζ, zk+1, . . . , zn) ·

dζ∧ dζ
ζ− zk

= 0 by ().

Hence w − ∂ψ = 0 modulo dz1, . . . , zk−1, since ∂ψ cancels out w1 ∧ dzk (this is why the factor of
(−1)k−1 is in the definition of ψ, since we must commute the dzk factor through dz I\{k}). Thus as
described above, this completes the proof of Step 1.

Step 2: Remove the use of s < r in Step 1.

Let r j,k be a strictly increasing sequence in  (so in particular all terms are finite) with r j,k → rk
as j →∞, for all k = 1, . . . , n. Let Pj = Pr j

(a). Then by Step 1, we know that we can find ψ j ∈
 0,q−1
 (Pj) with ∂ψ j = w on Pj .

We first prove the q ≥ 2 case, leaving the q = 1 case for last. We first need to modify the ψ j so that

they are compatible with one another on overlaps. So since ∂

ψ j −ψ j+1


= 0 on Pj , by Step 1 we

can choose β j+1 ∈ 0,q−2
 (Pj−1)withψ j−ψ j+1 = ∂ β j+1 on Pj−1 ⊂ Pj . Now extend all theψ j+1,β j+1

smoothly to P in such a way such that β j+1 ≡ 0 outside a compact subset of Pj . Then set:

ϕ j+1 =ψ j+1 + ∂ β j+1.

This produces a sequence (ϕ j) j such that ∂ ϕ j+1 = w on Pj+1, and ϕ j+1 = ϕ j on Pj−1. To see this last

equality on Pj−1, by construction we have

ϕ j |Pj−1
−ϕ j+1|Pj−1

= ∂ β j |Pj−1

and by construction β j vanishes outside a compact subset of Pj−1. Thus we have that ϕ j |Pj−1
and

ϕ j+1|Pj−1
agree on an open subset of Pj−1 and so by the identity principle they must agree on all of

Pj−1.

Thus the sequence (ϕ j) j converges to some ϕ on P (due to this compatibility as the ϕ j agree on the

smaller polydiscs), and moreover this ϕ has ∂ ϕ = w on P (i.e. for fixed J , for all j sufficiently large
we have ϕ|PrJ

= ϕ j , and so in PrJ
we have ∂ ϕ|PrJ

= ∂ ϕJ = w. So taking J →∞ we get ∂ ϕ = w on
all of P).

Now we just need to consider the q = 1 case, i.e. when w is a (0, 1)-form.
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In this case the ψ j above are just functions. We construct a sequence ϕ j on Pj such that:

(†)





∂ ϕ j = w on P
ϕ j+1 −ϕ j is holomorphic on Pj

ϕ j+1 −ϕ jC0(Pj−1) < 2− j .

Assuming this, the (ϕ j) j converge locally uniformly to some ϕ on P. Moreover, ϕ −ϕ j is holomor-
phic on Pj , as it is the local uniform limit of (ϕ j+l − ϕ j)l≥1 (using Corollary 1.1 as these are all
holomorphic).

So hence ∂ ϕ = ∂ ϕ j = w on Pj (since ∂ (ϕ −ϕ j) = 0) and hence ∂ ϕ = w on P.

So all that remains is to construct a sequence (ϕ j) j as in (†). We know that we can solve ∂ψ j = w
on Pj as before (using Step 1). Set ϕ1 = ψ1. We then construct ϕ j+1 inductively on j. Since

∂ (ϕ j −ψ j+1) = 0 on Pj , we see that ϕ j −ψ j+1 is holomorphic on Pj , and hence it has a Taylor series
expansion valid on Pj . Truncating the Taylor series gives a polynomial γ j+1, and truncating at a high
enough degree gives

ϕ j −ψ j+1 − γ j+1C0(Pj−1) < 2− j .

Then extend γ j+1 to a holomorphic function on Pj , and set ϕ j+1 := ψ j+1 + γ j+1. Then ∂ ϕ j+1 = w
on Pj+1, ϕ j+1 −ϕ j is holomorphic on Pj , and

ϕ j+1 −ϕ jC0(Pj−1) < 2− j .

Thus we have constructed such a sequence and thus are done.

□
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2. SHEAVES AND COHOMOLOGY

We want to compare Dolbeault cohomology with sheaf cohomology. So first we need to discuss
sheaves. Let X be a topological space.

Definition 2.1. A presheaf of groups on X consists of abelian groups (U) for all U ⊂ X open,
and restriction homomorphisms rV U : (U)→ (V ) for all V ⊂ U open, such that

rVW ◦ rW U = rV U and rUU = id (U)
i.e. if we restrict from U to W and then W to V , this is the same as just restricting from U to V .

One similarly defines presheaves of vector spaces. Most often  (U) is some class of functions on U ,
with restrictions given just by restricting the functions, and so in this case we write: rV U(s)≡ s|V .

Another frequent example given by  (U) consists of sections of some vector bundle. Thus we call:

Definition 2.2. For  a presheaf on X , elements of  (U) are called sections.

Definition 2.3. A presheaf  on X is a sheaf if in addition we have:

(i) For all s ∈  (U), if U = ∪iUi is an open cover and s|Ui
= 0 for all i, then s = 0.

(ii) If U = ∪iUi is an open cover, and we have si ∈  (Ui) with si |Ui∩U j
= s j |Ui∩U j

for all i, j,
then ∃s ∈  (U) with s|Ui

= si for all i.

Remark: Condition (i) of a sheaf tells us that the local behaviour of a section uniquely determines
its global behaviour, whilst (ii) tells us that we can build global sections from local compatible be-
haviours. Thus equally (i) tells us that this construction of a global section is unique.

Example 2.1. The following are all sheaves on a complex manifold:

(i) C0(U) = {Continuous functions on U}.
(ii) C∞(U) = {Smooth functions on U}.

(iii)  p,q
 (U) = {(p, q)-forms on U}.

(iv)  (U) := {holomorphic functions on U}.
(v)  ∗(U) := {Nowhere vanishing holomorphic functions on U}.

(vi) Ωp(U) := {holomorphic p-forms on U}

≡ {sections s ∈ p,0

 (U) with ∂ s = 0}

.

All of these are naturally vector spaces except (v), which is a group with multiplication being the
group action.
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Definition 2.4. A morphism α :  →  of (pre-)sheaves on X consists of homomorphisms αU :
 (U)→ (U) for all U ⊂ X open, such that if V ⊂ U is open, the diagram

 (U)  (U)

 (V )  (V )

αU

rV U rV U

αV

commutes.

Definition 2.5. For  , , sheaves, we say that the sequence

0    0α β

is exact if for all U ⊂ X open, the sequence

0  (U)  (U)  (U) 0
αU βU

is an exact sequence (in the usual sense of abelian groups), and if whenever s ∈ (U) and x ∈ U,
∃ a neighbourhood V of x and t ∈  (V ) with: βV (t) = s|V .

Example 2.2 (The Exponential Short Exact Sequence). The sequence

0    ∗ 0×2πi exp

is an exact sequence of sheaves, and is called the exponential short exact sequence. Here  is the
constant sheaf and so (U) = {locally constant (continuous) functions U → }(ii), and exp is the
exponential map, sending f → exp( f ).

The exactness of 0→ (U) ×2πi→  (U) exp→  ∗(U) is clear: if f ∈  ∗(U) is nowhere vanishing, then
one can take a local branch of log on some V ⊂ U to obtain the last condition for an exact sequence
of sheaves.

Note that it is not true that, if ∆∗ = {z ∈  : 0< |z|< 1}≡ B1(0)\{0} that

0 (∆∗)  (∆∗)  ∗(∆∗) 0×2πi exp

is exact. This is because including the last → 0 map can lose the exactness, essentially because we
can only locally construct log, but not globally.

Definition 2.6. Let  be a sheaf on X and let x ∈ X . Then the stalk x of  at x is:

x :=
{(U , s) : x ∈ U ⊂ X , s ∈  (U)}

∼
where (U , s)∼ (V, t) if ∃W ⊂ U ∩ V open with s|W = t|W .

(ii)Similarly we can define a sheaf  by (U) := {Continuous functions U → , where  has the discrete topology}.
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So intuitively the stalk at x is all possible local behaviours about x (think of the identity principle
for the equivalence relation).

Note: A morphism  → induces a map of stalks x →x for all x .

Exercise: Show that:

0    0 ⇐⇒ 0 x x x 0

is exact is exact for all x ∈ X .

Definition 2.7. The kernel of α : → is the sheaf defined by

ker(α)(U) := ker (αU : (U)→ (U)) .

The definitions of cokernel and image are more complicated, as we want them to be compatible with
the sheaf definitions.

2.1. Čech Cohomology.

Our aim is to define the Čech cohomology groups Ȟ(X , ) for  a sheaf on X , and we will show:

H p,q

∂
(X ) ∼= Ȟq(X ,Ωp)

are isomorphic in a natural way. We begin with an example.

Let X be a topological space with X = U ∪ V , U , V open in X . Then if sU ∈  (U) and sV ∈  (V ),
when does there exists an s ∈  (X ) with s|U = sU , s|V = sV ?

As  is a sheaf, by the sheaf conditions we know such an s exists⇔ sU |U∩V = sV |U∩V . So thus we
can define a map

δ : (U)⊕ (V )→ (U ∩ V ) via δ(sU , sV ) := sU |U∩V − sV |U∩V .

Then clearly by the above discussion we have ker(δ)∼= (X ).

Now if U = {Uα}α is a locally finite open cover of X (we will need the locally finiteness later for
working with partitions of unity) indexed by a subset of  (or any ordered set) we write:

Uα0···αp
:= Uα0

∩ · · ·∩ Uαp
.

Then we define:
C0(U , ) =


α

 (Uα), C1(U , ) =


α<β

 (Uαβ )

and in general

C p(U , ) =


α0<···<αp

 (Uα0···αp
).

Now if σ ∈ C p(U , ), we also define:

σα0···αiαi+1···αp
= −σα0...αi+1αi ···αp

.
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We are now ready to construct a cohomology theory. As we usually do when constructing a coho-
mology theory, we define the boundary map δ : C p(U , )→ C p+1(U , ) by:

(δσ)α0···αp+1
=

p+1

j=0

(−1) j σα0···α̂ j ···αp+1


Uα0 ···αp+1

.

Example 2.3. Suppose U = {U1, U2, U3}, and σ = {σ1,σ2,σ3} ∈ C0(U , ). Then:

(δσ)0,1 = (−1)0σ1 + (−1)1σ0 = σ1 −σ0

and similarly
(δσ)1,2 = σ2 −σ1 and (δσ)0,2 = σ2 −σ0.

Then:


δ2σ


0,1,2 =
2

j=0

(−1) j (δσ)α0···α̂ j ···α2


U0,1,2

= (δσ)1,2 − (δσ)0,2 + (δσ)0,1

= (σ2 −σ1)− (σ2 −σ0) + (σ1 −σ0)
= 0.

Thus δ2 = 0 here, which is good for a cohomology theory!

Exercise: Show that δ2 = 0 in general.

Definition 2.8. With respect to such an open cover U = {Uα}α, we define the Čech cohomology
by:

Ȟq(U , ) :=
ker

δ : Cq(U , )→ Cq+1(U , )



Image (δ : cq−1(U , )→ Cq(U , )) .

However this definition currently depends on the open cover U of X . To define the Čech cohomology
of X , we need to remove this dependence on the cover, which we do in the standard way of a direct
limit.

Definition 2.9. We say that σ ∈ C p(U , ) is a cocycle if δσ = 0, and a coboundary if σ = δτ
for some τ.

So as usual the above cohomology groups are “cycles modulo boundaries”.

Example 2.4. Consider X = 1, with homogeneous coordinates [z : w]. Let

U = {[z : 1] : z ∈ }= {w ∕= 0} and V = {[1 : w] : w ∈ }= {z ∕= 0}.
Then clearly U , V ∼= , and U ∩V ∼= ∗ ≡ \{0}. So let = {U , V} be an open cover of 1. Then

C0( , ) =  (U)⊕ (V ) and C1( , ) =  (U ∩ V ).
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Then δ : C0( , )→ C1( , ) can be calculated as

δ( f , g) = f (z)− g(1/z).

So ker(δ) consists of the pairs ( f , g) such that f = g = constant. This is seen by writing f , g as
power series (since they are holomorphic we can do this)

f (z) =
∞

n=0

anzn and g(z) =
∞

n=0

bnzn

and so

f (z) = g(1/z) ⇐⇒
∞

n=0

anzn =
0

n=−∞
bnzn =⇒ an = bn = 0 ∀n> 0 and a0 = b0

i.e. f = g = a0 are constant.

So we know what ker(δ) is. We can also see that the image of δ consists of all holomorphic functions
on ∗, again by a Laurent series argument. Thus we see that

Ȟ0( , ) =  and Ȟ i(, , ) = 0 ∀i > 0.

We will see later that this computes H i(1, ), the Čech cohomology of 1.

So far in our quest for Čech cohomology we have used open covers. We now remove the choice of
open cover to establish the true definition. As mentioned before we do this by taking a direct limit
under refinements of open covers.

Definition 2.10. Given (locally finite) open covers U, V , we say that V refines U if ∃ϕ : → 
increasing such that ∀β , Vβ ⊂ Uϕ(β). We write V ≤ U in this case.

Now if V ≤ U , we have a natural map ρV U : C p(U , )→ C p(V, ) given by

(ρV Uσ)β0···βp
:=

σϕ(β0)···ϕ(βp)


Vβ0 ···βp

where ϕ is as in the definition of a refinement. One can check that ρV U ◦ δ = δ ◦ρV U , and so ρV U
induces a homomorphism

ρ : Ȟq(U , )→ Ȟq(V, ) ∀q.

One can also check that this map is independent of the choice of ϕ.

Definition 2.11. The Čech cohomology of X is:

Hq(X , ) := lim−→
U

Ȟq(U , )

where lim−→ is a direct limit (defined below).

Note: For the genuine Čech cohomology groups we omit the “ ·̌ ” (“check”) symbol.
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We quickly recall the definition of a direct limit:

Recall: If I is a partially ordered set, and Gi is an abelian group for all i ∈ I with maps ϕi j : Gi → G j
for all i ≤ j such that ϕi j ◦ϕ jk = ϕik, then the direct limit of this system is defined to be:

lim−→
I

Gi :=
⊕i∈I Gi

∼

where if gi ∈ Gi , g j ∈ G j , we say gi ∼ g j if ∃k with i, j ≤ k and ϕik(gi) = ϕ jk(g j).

Intuitively, the maps betwen the Gi bump the elements of the Gi up the poset I . This equivalence
relation then says that two elements are equivalent if after being pumped up the ordering by these
maps, the elements are eventually become equal.

It can be shown that the direct limit as above is also an abelian group.

Thus going back to Čech cohomology, the elements of Hq(X , ) are represented by [σα0···αq
] ∈

Ȟq(U , ), and equality is checked on a common refinement.

We will see that in the special case where each intersection of the Ui in an open cover is isomorphic
to a polydisc, then for such “good covers” we have

Hq(X , ) = Ȟq(U , ).

Example 2.5. Ȟ0(U , ) = (X ) for all U, and so H0(X , ) = (X ) is just the global sections.

Example 2.6. We will show that Hq(X , r,s
 ) = 0 for any q > 0.

To see this, let σ ∈ Hq(X , r,s
 ) be represented by σ ∈ Cq( , r,s

 ). Then by definition we know
that δσ = 0.

So because we have a locally finite open cover, we can find a partition of unity (ρα)α subordinate
to the cover  = {Uα}α. Then define:

τα0···αq−1
:=


β

ρβ σβα0···αq−1  
extend by 0 to Uα0 ···αq−1

.

So τ ∈ Cq−1( , r,s
 ). The general computation to show δτ = σ (thus proving the result) will

be left for the second example sheet. We give a special case here to demonstrate how to prove the
general case.

So as a special case suppose  = {U , V, W}. Then

() 0= δσ = σUV −σUW +σVW

and
τU = ρVσV U +ρWσW U , τV = ρUσUV +ρWσW V , τW = ρUσUW +ρVσVW .
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Then:
(δτ)UV = τV −τU = (ρUσUV +ρWσW V )− (ρVσV U +ρWσW U)

= ρUσUV +ρVσUV +ρWσW V −ρWσW U as σV U = −σUV

= (ρU +ρV +ρW )σUV using ()

= σUV since ρU +ρV +ρW ≡ 1 as a partition of unity.

Thus we see (similarly for other cases) that δτ = σ, and thus σ is exact. Hence we have
Hq(X , r,s

 ) = 0 for any q > 0.

Similarly we have Hq(X , k
) = 0 for all q > 0.

Now let β :  →  be a morphism of sheaves. Then β induces a map C p(U , ) → C p(U , ) for
any U . These maps commute with δ, and so induce/descend to maps on the Čech cohomology:
β∗ : H p(X , )→ H p(X , ).

Now suppose 0→  α→ β→ is exact. We want to show that we get a long exact sequence (l.e.s)
on cohomology. Now because α,β are morphisms on sheaves, as above we get maps

α∗ : H p(X , )→ H p(X , ) and β∗ : H p(X , )→ H p(X , ).
Now we define the coboundary maps

δ∗ : H p(X , )→ H p+1(X , )
in the following way:

Given σ ∈ C p(X , ), we can pass to a refinement V of U and find τ ∈ C p(V, ) with
β(τ) = ρV U(σ) (where ρV U are the sheaf restriction maps). Now assume δσ = 0.
Then:

β(δτ) = δ(β(τ)) = δρV U(σ) = ρV U(δσ) = ρV U(0) = 0.

Thus we can find (by exactness) µ ∈ C p+1(V, ) such that α(µ) = δτ. Then

α(δµ) = δ(α(µ)) = δ2τ= 0

as δ2 = 0. But since α is injective by exactness, this implies δµ= 0. Thus µ defines
an element of H p+1(X , ), which is what we want. Then we define:

δ∗([σ]) := [µ] ∈ H p+1(X , ).

This gives rise to:

Theorem 2.1. The sequence defined above:

0 H0(X , ) H0(X , ) H0(X , )

H1(X , ) H1(X , ) · · ·

α∗ β∗

δ∗
α∗ β∗

is exact.
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Proof. We will not prove this in general - see Example Sheet 2.

For all sheaves in this course, ∃ arbitrarily fine open covers with 0→ (U)→ (U)→ (U)→ 0
exact for all U ∈  . In this case the theorem is also an exercise to prove - again see Example Sheet
2.

□

Now we want to relate sheaf cohomology to Dolbeault cohomology. We will prove:

Theorem 2.2 (Dolbeault’s Theorem). If X is a complex manifold, then

H p,q

∂
(X ) ∼= Hq(X ,Ωp)

where Ωp(U) = {σ ∈ p,0(U) : ∂ σ = 0}.

We will first prove a simpler version relating de Rham cohomology to sheaf cohomology for smooth
manifolds, and use ideas from that proof to establish Dolbeault’s theorem.

Definition 2.12. We say that 1
α1→2

α2→ · · · is a complex of sheaves if αi+1 ◦αi = 0 for all i.

We say that a complex is exact if 0→ ker(αi) →i
αi→ ker(αi+1)→ 0 is a short exact sequence of

sheaves for all i.

Theorem 2.3 (de Rham’s Theorem). If X is a smooth manifold, then

H i
dR(X ,) ∼= H i(X ,),

where in Čech cohomology H i(X ,) by  we mean the constant sheaf.

Remark: Since de Rham cohomology is isomorphic to singular cohomology, it follows that

H i
sing(X ,)∼= H i(X ,)

where H i
sing(X ,) is the singular cohomology of X .

Proof. The Poincaré lemma tells us that a form which is closed in X is locally exact. Thus the Poincaré
lemma tells us that the sequence

0   0  1  2 · · ·d d d

is exact. That is, for all p, writing Z p = ker( p d→ p+1) for simplicity, we have exact sequences:

()
0   0 Z1 0

0 Z p−1 Ap−1 Z p 0
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for all p > 1. We see before in Example 2.6 that Hq(X , p) = 0 for all p > 0 and all p ≥ 0. Thus the
long exact sequence in cohomology associated to the top line in () gives:

H p(X ,) ∼= H p−1(X , Z1) as H p(X , 0) = H p−1(X , 1) = 0
∼= H p−2(X , Z2) from lower part of ()

...
∼= H1(X , Z p−1).

Then since from the lower part of (),

0 H0(X , Z p−1) H0(X , p−1) H0(X , Z p) H1(X , Z p−1) 0d

is exact (the next group up in the l.e.s is 0, hence why the far right group is 0), this gives

H1(X , Z p−1) ∼= H0(X , Z p)
d(H0(X , p−1))

=
Z p(X )

d( p−1(X ))
=: H p

dR(X ,).

The first equality here just comes from exactness of the sequence, the second comes from the fact
(which we previously established) H0(X , ) ∼=  (X ) for any sheaf  on X , and the last is by defi-
nition of the de Rham cohomology as we have an kernel quotiented by the image.

Thus combining we have H p(X ,)∼= H1(X , Z p−1)∼= H p
dR(X ,) and so we are done.

□

Proof of Dolbeault’s Theorem. We work in a similar way to the proof of Dolbeault’s theorem above.
We have an exact complex

0 Ωp  p,0
  p,1

 · · ·∂ ∂

which is exact by the ∂ -Poincaré lemma. Write

Ωp(U) := {σ ∈ p,0
 (U) : ∂ σ = 0}.

Also as before set Z p,q = ker

∂ : p,q

 →
p,q+1


. Thus we have exact sequences:

0 Ωp  p,0 Z p,1 0

0 Z p,q−1  p,q−1 Z p,q 0

(as every open set in X contains an open subset which is biholomorphic to a polydisc). Then once
again since by Example 2.6 we have H i(X , r,s

 ) = 0 for all i > 0 and all r, s, arguing as in the proof
of de Rham’s theorem we have:

Hq(X ,Ωp) ∼= Hq−1(X , Z p,1)
∼= · · · ∼= H1(X , Z p,q−1)

∼= H0(X , Z p,q)

∂

H0

X , p,q−1




=
Z p,q(X )

∂

 p,q−1
 (X )
 =: H p,q

∂
(X )

28



Complex Manifolds Paul Minter

which proves the result. □

Remark: Note that in the last string is isomorphisms in the proof of Dolbeault’s theorem we see in
particular that H1(Uα0···αs

, Z0,q−1) = H0,q

∂
(Uα0···αs

) for any α0, . . . ,αs for any open cover U .

This enables us to prove one way of calculating the Čech cohomology, which is by finding a “nice”
open cover:

Theorem 2.4. Let X be a complex manifold. Suppose U is an open cover with the property that:

H p

Uα0···αs

, 

= 0 ∀p ≥ 1 and all α0, . . . ,αs.

Then H p(X , )∼= H p(U , ).

Proof. We have from the above remark:

H1(Uα0···αs
, Z0,q−1) = H0,q

∂
(Uα0···αs

) = Hq(Uα0···αs
, ) = 0 by hypothesis.

Thus we see

0 Z0,q−1(Uα0···αs
)  0,q−1

 (Uα0···αs
) Z0,q(Uα0···αs

) 0

is exact. This is true for all intersections, and so we get a short exact sequence:

0 C p(U , Z0,q−1) C p(U , 0,q−1
 ) C p(U , Z0,q) 0 .

Then considering the associated long exact sequence, and using that Ȟ p(U , 0,q) = 0 (from Example
2.6) gives that, for all p, q ≥ 1,

Ȟ p(U , Z0,q)∼= Ȟ p+1(U , Z0,q−1).

Then arguing as before in de Rham’s/Dolbeault’s theorem:

Ȟ p(U , ) = Ȟ p(U , Z0,0)∼= Ȟ p−1(U , Z0,1)∼= · · ·∼= Ȟ1(U , Z0,p−1)

and also

Ȟ1(U , Z0,p−1)∼= Z0,p(X )

∂ ( 0,p−1(X ))
= H0,p

∂
(X ) = H p(X , )

as required.

□

Remark: With the same hypotheses, this also shows that Hq(X ,Ωp)∼= Ȟq(U ,Ωp).

Example 2.7. Thus we see Hq(n, )∼= H0,q(n) = 0 for all q ≥ 1.

Remark: One can also show that if Ȟ p(Uα, ) = 0 for all Uα ∈ U (with no assumptions on the higher
order intersections), then in fact H p(X , ) ∼= Ȟ p(U , ) [see Voisin, §4 for a discussion of this]. So
in particular if X is projective, then one can take U to be a cover by affine subvarities. When X is
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not projective, one can take a cover by Stein manifolds (which can be thought of as the “complex
manifold version of affine varieties”).

Remark: We can also show H p(X ,)∼= H p
sing(X ,) for the integral cohomologies.

Remark: Just as some motivation for when you might use sheaf cohomology, one usually cares about
H0(X , ), and the higher H i are viewed as obstructions (e.g. in the short exact sequences - like in
Mittag-Leffler).

Another reason to care about H i is the Euler characteristic, defined via

χ(X , ) :=


i

(−1)i dim

H i(X , )


which is additive in s.e.s’s and usually constant in families (whilst H0 is not). H1 is also “geometric”.

Now we move on from sheaf theory and cohomology theory and look at vector bundles.
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3. HOLOMORPHIC VECTOR BUNDLES

Definition 3.1. Let X be a complex manifold. Then a holomorphic vector bundle of rank r
on X is a complex manifold E with a (holomorphic, surjective) map π : E → X with all fibres
π−1(x) =: Ex being r-dimensional (complex) vector spaces, such that ∃ an open cover {Uα}α of

X and biholomorphic maps ϕα : π−1(Uα)
∼=→ Uα × r isomorphisms which commuting with the

projections to X , Uα such that the induced maps on π−1({x})∼= r are -linear for all x ∈ X .

Thus this is essentially just the definition of a smooth vector bundle on a real smooth manifold,
except we require the local trivialisation to be biholomorphic instead of diffeomorphic. Note that
the conditions on π being holomorphic and surjective are implied from the other conditions (e.g.
surjective as π−1(x)∼= r ∕= ) and so we can choose to leave them out of the definition if we wish.

Definition 3.2. A holomorphic line bundle is a holomorphic vector bundle of rank 1.

Any holomorphic vector bundle induces a complex vector bundle, but not vice versa.

Definition 3.3. Let πE : E → X , πF : F → X be holomorphic vector bundles. Then a morphism
f : E→ F is a holomorphic map such that:

(i) πF ◦ f = f ◦πE

(ii) The induced map fx : Ex → Fx is linear for all x ∈ X

(iii) rank( fx) is constant with x.

A morphism is an isomorphism if fx is an isomorphism for all x ∈ X .

Remark: In differential geometry one usually does not require condition (iii) on a morphism. We
include it to enable us to take kernels and cokernels and still end up with vector bundles.

For a holomorphic vector bundle E, its transition functions ϕαβ ≡ ϕα ◦ ϕ−1
β

: (Uα ∩ Uβ ) × r →
(Uα ∩ Uβ )×r can be seen as holomorphic maps

ϕαβ : Uα ∩ Uβ → GLr()

i.e. x → ϕαβ (x , ·) and ϕαβ (x , ·) : r → r is linear. These maps satisfy the usual cocycle conditions:

ϕαα = idUα , ϕαβ = ϕ
−1
βα, ϕαβϕβγϕγα = idUα∩Uβ∩Uγ .

Proposition 3.1 (Equivalence of Cocycle Data and Holomorphic Vector Bundles). Given any
open cover X =


α Uα and holomorphic maps ϕαβ : Uα ∩ Uβ → GLr() satisfying the cocycle

conditions, there is a holomorphic vector bundle with these maps as its transition functions.
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Proof. The same as in differential geometry. □

So given a holomorphic vector bundle E and a trivialising cover U = {Uα}α of X with trivialisation
maps ϕα : E|Uα → Uα × r , the transition functions {ϕαβ}α,β ⊂ C1(U , GLr()), i.e. are C1 maps
U → GLr() (as usual ϕαβ = ϕα ◦ϕ−1

β
), and they satisfy the cocycle conditions as explained above.

Hence by definition of the boundary map we have δ({ϕαβ}) = 0, and so we obtain an element of
H1(X , GLr()), which we denote [ϕE] (here we are viewing GLr() as a group under multiplication).

We now specialise to the case of line bundles, i.e. r = 1, and so GL1() ∼= \{0} (so invertible we
do not have 0), and thus

H1(X , GL1())∼= H1(X , ∗)
since from before, GLr() is the sheaf defined by:

(GLr()) (U) := {holomorphic maps U → GLr()}.

Proposition 3.2. There is a canonical bijection:

{holomorphic line bundles on X up to isomorphism}←→ H1(X , ∗).

Proof. We have already constructed above maps in each direction. So we need to show that these
maps are inverses and the first map is well-defined (i.e. independent of the representative in the
equivalence class).

Suppose L ∼= F are isomorphic line bundles. Choose a cover U = {Uα}α trivialising both L, F . Then
we have maps:

ϕα : L|Uα
∼=→ Uα × and σα : F |Uα

∼=→ Uα ×
giving transition maps ϕαβ ,σαβ as before. Now as L, F are isomorphic we have an isomorphism
f : L→ F giving maps fα : L|Uα → F |Uα . Now define:

hα := σα ◦ fα ◦ϕ−1
α .

Then hα : Uα ×→ Uα ×, or can view it as a section of  ∗. Moreover,

(δh)αβ = hαh−1
β =

σα fαϕ

−1
α

 
ϕβ f −1

β σ
−1
β



= σα fαϕβα f −1
β σ

−1
β

= σαϕβα fα f −1
β σ

−1
β by definition of an isomorphism

= σαβϕ
−1
αβ as fα f −1

β = id

and thus the transition maps give the same element of Čech cohomology (as δh is exact), i.e. [σ] =
[ϕ] ∈ H1(X , ∗).

Thus the first map is well-defined.

For the converse, suppose L, F are line bundles with [ϕ] = [σ] ∈ H1(X , ∗). Thus we can find
h = {hα}α ∈ C0(U , ∗) with (δh)αβ = ϕ−1

αβ
σαβ (as [ϕ−1σ] is exact). Now let fα : L|Uα → F |Uα be

given by:
fα := σ−1

α hαϕα
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(i.e. just mimicking what we did above). We claim that the fα induce a map f : L → M , i.e.
fα ◦ f −1

β
= id on Uα ∩ Uβ (so we can patch the fα together to get a global map). But indeed,

fα f −1
β = σ−1

α hαϕαϕ
−1
β h−1

β σβ = · · ·= id

as in the above calculation. Thus we are done.

□

Remark: A similar result is true for all ranks with the right definition of Čech cohomology for sheaves
of (non-abelian) groups. For line bundles all groups are abelian and so we can use the sheaf theory
we looked at.

Definition 3.4. The Picard group is:

Pic(X ) := {line bundles on X up to isomorphism}.

Proposition 3.3. Pic(X ) is a group, with the group action being the tensor product of line bundles,
and Pic(X )∼= H1(X , ∗).

Proof. The easiest way of doing this is using the transition functions. The transition functions for
L ⊗ F are ϕαβ ⊗σαβ ∈  ∗(Uα ∩ Uβ ). So if L∗ is the dual line bundle of a line bundle L, we have

L ⊗ L∗ ∼=  and L ⊗ ∼= L

i.e. L∗ is the inverse of L and  is the identity element. So Pic(X ) is a group, and from this construc-
tion via line bundles (using Proposition 3.2) we see Pic(X )∼= H1(X , ∗).

□

Example 3.1. Any linear algebra operation gives an operation on vector bundles, e.g.:

(i) E ⊕ F is a vector bundle with transition functions

ϕαβ 0

0 σαβ


.

(ii) E⊗ F is a vector bundle with transition functions ϕαβ ⊗σαβ ∈ GL(r ⊗r ′)≡ GLr+r ′().
(iii) ΛkE is a vector bundle with transition functions Λkϕαβ .

If k = r we write Λr E =: det(E), the determinant line bundle. Thus to any vec-
tor bundle we get an associated line bundle via the top exterior power, i.e. the determinant
line bundle.
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Definition 3.5. A holomorphic section s of a holomorphic vector bundle E over U ⊂ X is a
holomorphic map s : U → E with π ◦ s = id. We write  (E) for the sheaf of holomorphic sections
of E, i.e.

 (E)(U) := {holomorphic sections of E over U ⊂ X }.

Then the usual  can be seen as the sheaf of sections of the trivial line bundle X ×.

Definition 3.6. If , are sheaves, a morphism of sheaves ϕ is an isomorphism if ϕU : (U)→
 (U) is an isomorphism for all U ⊂ X .

Definition 3.7. A sheaf  is locally free of rank r if ∀x ∈ X , ∃ open U ⊂ X , x ∈ U, with

 |U ∼= ( ⊕ · · ·⊕ )  
r copies

|U .

Remark: We never actually defined a restriction sheaf, so we quickly note the definition here: if
is a sheaf on X and U ⊂ X is open, then  |U is a sheaf with for all V ⊂ U open,  |U(V ) := (V ).

Proposition 3.4. Associating to a holomorphic vector bundle its sheaf of sections gives a canonical
bijection:

{holomorphic vector bundles up to isomorphism}←→ {locally free sheaves up to isomorphism}.

Proof. Clearly the sheaf of sections of a holomorphic vector bundle E is locally free, as E is locally
isomorphic to Uα ×r . So this is a map in one direction.

For the converse, if we have trivialisations ϕα : |Uα
∼=→  ⊕r

Uα

(by definition of a locally free sheaf),
then the transition maps

ϕαβ ≡ ϕα ◦ϕ−1
β :  ⊕r(Uα ∩ Uβ )

∼=→ ⊕r(Uα ∩ Uβ )

are given by a matrix of holomorphic functions on Uα ∩Uβ , giving the cocycle conditions and hence
a holomorphic vector bundle. So this gives a map from locally free sheaves to holomorphic vector
bundles.

But we now need to check that these maps are inverses of one another. But this is straightforward
from how we construct vector bundles from cocycle data/local trivialisations.

□

Notation: We write for E a holomorphic vector bundle,

H i(X , E) := H i(X , (E)).
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Example 3.2. Recall that T X 1,0 is the holomorphic tangent bundle. We want to show that this is
actually a holomorphic vector bundle. So we need to show that the transition functins are actually
holomorphic.

So we need to remember how we actually constructed T (1,0)X ≡ T X 1,0. Let X =

α Uα be an

open cover by charts, and ϕα : Uα → ϕα(Uα) ⊂ n. The Jacobian of the transition maps ϕαβ =
ϕα ◦ϕ−1

β
: ϕβ (Uα ∩ Uβ )→ ϕα(Uα ∩ Uβ ) is

J(ϕαβ ) =


∂ γϕαβ

∂ zδ

ϕαβ (z)


γ,δ

.

Then by Example Sheet 1, Q1, we know T (1,0)X has transition functions ϕαβ (z) := J(ϕαβ )(ϕβ (z)).
So as we can view ϕαβ (z) ∈ GLn(Uα ∩ Uβ ), these are holomorphic. □

Now as always whenever we have a vector bundle we get a line bundle via the top exterior power
(we will see that line bundles are somewhat “more fundamental” than vector bundles). Since we
always have a holomorphic vector bundle on a complex manifold (via) the holomorphic tangent
bundle, this means every complex manifold has a canonical line bundle (which turns out to be the
only natural line bundle on a complex manifold).

Definition 3.8. We define the canonical line bundle of a complex manifold X by:

KX := det

T ∗X 1,0

≡ Λn

T ∗X 1,0


where T ∗X 1,0 ∼= (T X 1,0)∗. This is a holomorphic line bundle.

Another key example of line bundles is the canonical line bundle on n:

Example 3.3. Here we construct line bundles in n. Each point l ∈ n corresponds to a line through
0. So consider the set:

 (−1) := {(l, z) ∈ n ×n+1 : z ∈ l}
i.e. the fibre at l ∈ n is just the line l in n+1. We claim that this is a holomorphic line bundle
 (−1)→ n.

Indeed, consider the standard cover n =
n
α=0 Uα. A trivialisation of  (−1) over Uα is cover by:

ψα : π−1(Uα)→ Uα × sending (l, z) → (l, zα)

for z = (z0, . . . , zn) (i.e. zα is α’th-coordinate of z). The transition functions are thenψαβ (l) : →
 sending z → lα

lβ
z, where l = [l0 : · · · : ln], which is holomorphic since it is linear.

Finally we need to check that  (−1) is a complex manifold. If ϕα : Uα → n is as above, then
define charts ϕ̂α : π−1(Uα) → ×n

∼=n+1
via: ϕ̂α := (ϕα × id) ◦ψα. Then one can check that this

works, and so we are done. □
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Definition 3.9.  (−1) is called the tautological line bundle of n.

So we have seen that  (−1) is indeed a holomorphic line bundle. We then define:

 (1) :=  (−1)∗

which is called the hyperplane line bundle. We then define:

 (k) :=  (1)⊗k,  (−k) :=  (−1)⊗k,  (0) = 
for all k > 0. We will later show that these are all the holomorphic line bundles on n, and so

Pic(n)∼=  with generator  (1).
Now one last important example before moving on:

Example 3.4. If p : Y → X is a morphism and E → X is a holomorphic vector bundle, then one
obtains the pullback bundle over Y , p∗E→ Y , by pulling back the transition functions via p.

If Y ⊂ X is a submanifold, we write E|Y for the pullback bundle of E under the inclusion map
Y → X .

Also for any projective X , we know X is biholomorphic to a subset of n (for some n), i.e. X ⊂ n,
and then X has a natural line bundle via pulling back the hyperplane line bundle, i.e.  (1)|X → X .

3.1. (Commutative) Algebra of Complex Manifolds.

We now relate sections of line bundles, codimension one submanifolds, and meromorphic functions
to one another. By the implicit function theorem, a subset Y ⊂ X is a closed submanifold if and only
if for all p ∈ X , ∃ a neighbourhood U ⊂ X of p and holomorphic functions f1, . . . , fk : U →  such
that 0 is a regular value of f = ( f1 ◦ϕ−1, . . . , fk ◦ϕ−1) : ϕ(U)→ k, where ϕ : U → n. In this case
we have

Y ∩ U =
k

i=1

f −1
i (0)

i.e. this is just saying that Y is locally the region cut out by some holomorphic functions.

Recall: If U ⊂ n is open and f : U → k is holomorphic, then setting

J( f )(z) :=


∂ fα
∂ zβ
(z)



1≤α≤k, 1≤β≤n

then z ∈ U is a regular point if J( f )(z) is surjective. Moreover if every z ∈ f −1(w) is regular, then
w is called a regular value.

Definition 3.10. Let X be a complex manifold. Then an analytic subvariety of X is a closed subset
Y ⊂ X such that for all p ∈ X , ∃ a neighbourhood U ⊂ X of p and holomorphic functions f1, . . . , fk

with Y ∩ U =
k

i=0 f −1
i (0).
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Remark: Note that we assume no extra structure on an analytic subvariety - it is just a closed subset
defined in this way. Thus the only difference between it and the above closed submanifold discussion
is that in the definition of the analytic subvariety we do not assume 0 is a regular value. Thus an
analytic subvariety really is just a closed subset which is locally cut out by holomorphic functions.

Definition 3.11. For Y an analytic subvariety of X , we say y ∈ Y is a regular (or smooth) point
if one can choose the fi in Definition 3.10 such that 0 is regular.

Then by the implicit function theorem, if Y S denotes the points of Y which are not regular (i.e. “S” for
“singular”), then Y ∗ := Y \Y S is naturally a complex manifold (or at least its connected components
are).

Definition 3.12. An analytic subvariety Y is irreducible if it cannot be written as Y = Y1 ∪ Y2,
with Y1, Y2 analytic subvarieties with Y1, Y2 ∕= Y .

Example 3.5. The set

(z1, z2) ∈ 2 : z1z2 = 0


⊂ 2, i.e. the union of the coordinate axes, is an

analytic subvariety which is reducible, since {z1 = 0}∪ {z2 = 0} = {z1z2 = 0}. However it is not a
complex manifold since it is singular at the origin.

Definition 3.13. We define the dimension of an irreducible analytic subvariety Y to be:

dim(Y ) := dim(Y ∗)

where the latter is well-defined as it is a complex manifold.

Similarly if Y is reducible and each irreducible component of Y has the same dimension we can
define dim(Y ).

Definition 3.14. If codim(Y ) = 1, then we say Y is an analytic hypersurface.

Now if  is a sheaf on X , for x ∈ X we define x to be the stalk of  at x . On n, we set n to be
the sheaf of holomorphic functions, and we set

n := n,0

to be the stalk at 0 ∈ n. Elements of n are of the form (U , f ), for f ∈ n(U), 0 ∈ U , and we have
(U , f ) = (V, g) if ∃ an open set W ⊂ U ∩ V with f |W = g|W .

In the case of X an n-dimensional complex manifold, we write X for the sheaf of holomorphic
functions on X . Then since X locally looks likes n we have

X ,x
∼= n

for any x ∈ X .
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Definition 3.15. We call elements of X ,x germs of holomorphic functions.

Note that n is a local ring, in the sense it has a unique maximal ideal, namely { f : f (0) = 0}.
Functions not vanishing at 0 are invertible, and so these are the units of the ring.

We now state several results about n, proved using commutative algebra and complex analysis. We
shall not prove them - see Huybrechts Chapter 1 if interested.

Theorem 3.1. n is a unique factorisation domain (UFD).

Proof. See Huybrechts Chapter 1. □

Recall that f ∈ n is irreducible if f cannot be written as a product of two non-units in n. Thus
n being a UFD means that every element of n has a unique expression as a product of irreducible
elements, up to multiplication by units.

Theorem 3.2 (Weak Nullstellensatz). Let f , g ∈ n with f irreducible and let U be a neighbour-
hood on which both f , g are defined. Suppose { f = 0}∩U ⊂ {g = 0}∩U. Then f divides g in n,
i.e. g/ f is holomorphic near 0.

Proof. See Huybrechts Chapter 1. □

Definition 3.16. Let U ⊂ n be open. We shall call a set V ⊂ U thin if V is locally contained in
the vanishing set of a set of holomorphic functions.

Theorem 3.3. We have the following:

(i) Suppose f ∈ n is irreducible. Then ∃ a thin set of codimension ≥ 2 and an open set U
such that f ∈ p ≡ n,p is irreducible for all p ∈ U\V .

(ii) If f , g ∈ n are coprime, then ∃U and thin V ⊂ U with f , g being coprime in p for all
p ∈ U\V .

Proof. See Huybrechts Chapter 1. □

Remark: Huybrechts Proposition 1.1.35 claims that one can take V = , but this is wrong (as demon-
strated by the counterexample {y2 − xz3 = 0} ⊂ 3, which is irreducible at 0 ∈ 3 but not at any
(x0, 0, 0) for x0 near 0). The proof in Huybrechts actually proves Theorem 3.3.
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So let X be a complex manifold and Y ⊂ X an analytic hypersurface. Then if p ∈ Y , ∃ an open U ∋ p
with U ⊂ X and ∃ f ∈ X (U) with U ∩ Y = f −1(0)∩ U .

Definition 3.17. Such an f is called a local defining equation for Y .

If f = f1 · · · fr is such that the fi are irreducible, and also f = g1 · · · gm (again irreducible), then by
the weak nullstellensatz (and/or since n is a UFD), after reordering and multiplying by units, we
have r = m and fi = gi for all i.

Now one more result we will state without proof:

Theorem 3.4. Let Y be an analytic hypersurface. Then Y ∗ is an open dense subset of Y , and

Y ∗ is connected ⇐⇒ Y is irreducible.

Moreover Y S is contained in an analytic subvariety (of X ) of codimension ≥ 2.

Proof. None given. □

3.2. Meromorphic Functions and Divisors.

Definition 3.18. Let X be a complex manifold, and U ⊂ X open. Then a meromorphic function
on U is a map f : U → ∐p∈U Kp, where Kp is the field of fractions of p, such that ∀p ∈ U, ∃ a
neighbourhood V ⊂ U of p and g, h ∈ X (V ) with

fq =
g
h
∀q ∈ V.

We denote by K the corresponding sheaf of meromorphic functions.

Remark: f (p) ∈ Kp should be implied by the definition.

Note: This is different from the definition of a holomorphic function on a Riemann surface, which is
usually just an analytic map to 1. This however doesn’t generalise well, so hence the need for the
above definition.

Thus elements of Kp are of the form g/h, for g, h ∈ p, with h ∕= 0. We then as usual write K∗ for
the sheaf of meromorphic functions which are not identically zero.

Equivalently one can define a meromorphic function via specifying f |Uα = gα/hα, with gα, hα ∈
 (Uα) [Exercise to show]. A meromorphic “function” is undefined (even as∞) when both g(p) =
h(p) = 0.
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Definition 3.19. Let Y ⊂ X be an analytic hypersurface, p ∈ Y regular, and f a local defining
function for Y at p. Then for g ∈ X ,p we define the order of g along Y at p to be:

ordY,p(g) :=max{a ∈  : f a divides g in X ,p}.

This order is well-defined as X ,p is a UFD, and the order is always finite.

Lemma 3.1. ∃ a neighbourhood U of p and a thin set V of codimension ≥ 2 such that if q ∈
(U\V )∩ Y , then ordY,p(g) = ordY,q(g)

i.e. the order is locally constant up to a set of codimension ≥ 2.

Proof. Simply use Theorem 3.3(i). □

Definition 3.20. We define the order of g along Y (with Y irreducible) to be

ordY (g) := ordY,p(g)

for any p ∈ Y ∗ away from the thin set found in Lemma 3.1.

Note: To define the order of g along Y we are using that Y ∗ is open (and so has codimension 0) and
that V has codimension 2 in X , so such a p does exist.

Then one can show that if g, h are holomorphic around p, then

ordY (gh) = ordY (g) + ordY (h).

This allows us to define the order of meromorphic functions:

Definition 3.21. Let X be a complex manifold and f ∕≡ 0 a meromorphic function. Let Y be an
irreducible analytic hypersurface of X . Then we define the order of f along Y by

ordY ( f ) := ordY (g)− ordY (h)

where f = g/h at some regular point of Y .

Note that this is well-defined by the additivity of the order.

Definition 3.22. For X a complex manifold, f ∕≡ 0 a meromorphic function and Y an irreducible
analytic hypersurface of X , we say:

• f has a zero of order d along Y if d = ordY ( f )> 0
• f has a pole of order −d along Y if d = ordY ( f )< 0.
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Definition 3.23. A divisor on a complex manifold X is a formal sum

D =


α

aαYα

where α ∈  and the Yα are irreducible analytic hypersurfaces, such that D is locally finite, i.e. for
all x ∈ X , ∃ a neighbourhood V ⊂ X of x with Yα ∩ V =  for all but finitely many α.

We denote the set of divisors on X by Div(X), which is a group under addition.

Example 3.6. If dim(X ) = 1 (i.e. X is a Riemann surface), then a divisor is just a collection of
points with some multiplicities (i.e. the multiplicities being the coefficients aα).

Definition 3.24. We say that a divisor D is effective if aα ≥ 0 for all α.

Definition 3.25. If f ∈ H0(X , K∗), we define the divisor associated to f via:

( f ) :=


Y

ordY ( f )Y

where the sum is over all Y ⊂ X irreducible analytic hypersurfaces (recall here that K∗ is the sheaf
of meromorphic functions which are not identically zero).

To check that this ( f ) is actually a divisor we need to check that the sum is locally finite. But this is
the case, as given x ∈ X , then locally about x we have f = g/h, and there are only finitely many Y
with ordY (g) ∕= 0 (seen by writing g as a product of irreducibles).

Note: ( f ) is effective⇐⇒ f is holomorphic.

Definition 3.26. We call a divisor D a principle divisor if D = ( f ) for some f ∈ H0(X , K∗).

We say that divisors D, D′ are linearly equivalent, and write D ∼ D′, if D−D′ is a principle divisor.

Note: The relation ∼ of linear equivalence is transitive because ( f )+(g) = ( f g), which comes from
ordY ( f g) = ordY ( f ) + ordY (g).

There is an natural inclusion of sheaves  ∗ → K∗ as every holomorphic function is meromorphic.
Thus we obtain K∗

 ∗ , the quotient sheaf, obtained by sheafifying the presheaf defined by U → K∗(U)
 ∗(U)

(we need to sheafify since the quotient only forms a presheaf in general). A global section f ∈
H0

X , K∗
 ∗


thus consists of an open cover {Uα}α of X and meromorphic functions fα ∈ K∗(Uα) with
fα
fβ


Uα∩Uβ

∈  ∗(Uα ∩ Uβ ), whenever Uα ∩ Uβ ∕= .
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Proposition 3.5. There is an isomorphism H0

X , K∗
 ∗
∼= Div(X ).

Proof. Let f ∈ H0

X , K∗
 ∗

. Then we know f is given by meromorphic functions ( fα)α on an open cover

(Uα)α of X as detailed above. Now if Y is an irreducible analytic hypersurface with Y ∩(Uα∩Uβ ) ∕= ,
we have

ordY ( fα) = ordY ( fβ )

since fα
fβ


Uα∩Uβ

∈  ∗(Uα ∩ Uβ ) is holomorphic and so ordY


fα
fβ


= 0 (since if we take the order for a

point p ∈ Y ∩ (Uα ∩ Uβ ) this will be 0 as fα/ fβ is holomorphic in Uα ∩ Uβ).

Thus we may define ordY ( f ) := ordY ( fα) for any Uα with Y ∩ Uα ∕= , and thus this gives a map
H0

X , K∗
 ∗

→ Div(X ) via

f −→


Y

ordY ( f )Y.

This is clearly a group homomorphism, by the additivity of ord.

We next construct an inverse to the above map. Suppose D =

α aαYα is a divisor on X . Consider

Yα. Then there is an open cover {Uβ}β of X and gαβ ∈  (Uβ ) such that

Yα ∩ Uβ = g−1
αβ (0)

since Y is an irreducible analytic hypersurface (with say gαβ = 1 in Yα ∩ Uβ = ). Now set

fβ :=


α

gaα
αβ

which is a finite product as D is locally finite. Now since gαβ and gαγ define the same hypersurface
in Uβ ∩ Uγ, we have

gαβ
gαγ
∈  ∗(Uβ ∩ Uγ)

by the weak-nullstellensatz (Theorem 3.2). Thus the fβ glue to give a section of H0

X , K∗
 ∗

, and so

this construction gives a map Div(X )→ H0

X , K∗
 ∗

. These two maps are then clearly inverses of one

another [Exercise to check details] and so we are done.

□

Remark: We shall say that D ∈ Div(X ) is given by local data (Uα, fα), using the above construction
in Proposition 3.5.

Theorem 3.5. ∃ a group homomorphism Div(X )→ Pic(X ) via D →  (D), the kernel of which is
precisely the set of principle divisors.

Proof. Let D ∈ Div(X ) be given by local data (Uα, fα) as per Proposition 3.5. Let ϕαβ := fα
fβ


Uα∩Uβ

∈
 ∗(Uα ∩ Uβ ). These then satisfy the cocycle conditions (ϕαβϕβγϕγα = id) and so generate/give
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an element of Pic(X ) ∼= H1(X , ∗). We first check thar this is well-defined, i.e. independent of the
choice of local data defining D.

So suppose (Uα, f̃α) is alternative local data (same Uα by the construction in Proposition 3.5). Then
we have fα = sα f̃α for some sα ∈  ∗(Uα). The new transition functions defining an element of Pic(X )
are:

ϕ̃αβ = ϕαβ ·
sβ
sα

.

Then (Uα, sβ/sα) satisfy the cocycle conditions, thus giving a line bundle L with a nowhere vanishing
section s induced by the sα. Then if the line bundles defined by (Uα,ϕαβ ) and (Uα, ϕ̃αβ ) are, say, H
and H̃, then

H̃ ∼= H ⊗ L

as ϕ̃αβ = ϕαβ ·
sβ
sα

, and we know that the transition functions associated to a tensor product are just
the products of the transition functions for the corresponding (line) bundles.

But L has a nowhere vanishing section, and hence L must be (isomorphic to) the trivial line bundle.
Hence we have

H̃ ∼= H =:  (D)
and so this map is well-defined.

Next we need to check that the map is a group homomorphism. So let D, D̃ ∈ Div(X ) be given by
local data (Uα, fα) and (Uα, f̃α). Then D+ D̃ is the divisor with local data given by (Uα, fα f̃α) (since
Proposition 3.5 gives a homomorphism) and so

 (D+ D̃)∼=  (D)⊗ (D̃)
for the same reason (the transition functions of a tensor product is exactly the product of the transi-
tion functions). So  is a homomorphism.

Finally, we need to show that the kernel of this map is the set of principle divisors. For one inclusion,
suppose D = ( f ), f ∈ H0(X , K∗), is a principle divisor. Then we can take (Uα, fα) to be the local data
( fα being the meromorphic functions determining f as usual). Then

ϕαβ =
fα
fβ


Uα∩Uβ

= id

in H0

X , K∗
 ∗


since this function is holomorphic. Thus  (D) has trivial transition functions and hence
 (D)∼=  (the sheaf of holomorphic functions, which is the identity in Pic(X )).

For the reverse inclusion, suppose  (D)∼=  (so D is in the kernel). So ∃s a global nowhere vanishing
holomorphic section of  (D). Suppose  (D) has transition functions (Uα,ϕαβ ), and so D is given

by (Uα, fα) where ϕαβ =
fα
fβ

(locally on Uα ∩ Uβ). Set sα := s|Uα , and so sα = ϕαβ sβ [see Example
Sheet 3 for more elaboration]. Then

sα
sβ
= ϕαβ =

fα
fβ

.

Thus g defined by g|Uα := fα
sα

is a well-defined global meromorphic function on X , since the above

tells us that on Uα ∩ Uβ we have fα
sα
=

fβ
sβ

. Then D = (g), since the sα are nowhere vanishing.
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Thus the reverse inclusion has been proven, and so ker(Div(X )→ Pic(X )) = {principle divisors of X }.
□

Exercise: Show that there is an exact sequence

0  ∗ K∗ K∗
 ∗ 0

and use the associated long exact sequence in cohomology to give another proof of Theorem 3.5.

So we have a map between these two groups, and so you might wonder if we can go the other way.
In some cases we can:

Proposition 3.6. For any s ∈ H0(X , L)\{0}, ∃ an associated Z(s) ∈ Div(X ).

Proof. Fix a trivialisation for L, π : L→ X . Then:

ϕα : π−1(Uα)
∼=→ Uα ×

with cocycle data (Uα,ϕαβ ). Set fα := ϕα(s|Uα) ∈  (Uα), which is not identically 0. Then we have

fα f −1
β = ϕα(s|Uα)ϕβ (s|Uβ )−1 = ϕαβ ∈  ∗(Uα ∩ Uβ ).

Thus one obtains Z(s) ∈ Div(X ) determined by the local data (Uα, fα). In addition we also see
[Exercise to check]

Z(s1 + s2) = Z(s1) + Z(s2).
□

Proposition 3.7. We have the following:

(i) Let s ∈ H0(X , L)\{0}. Then  (Z(s))∼= L.

(ii) If D is effective, ∃ s ∈ H0(X , (D))\{0} with Z(s) = D.

Proof. (i): Let L have trivialisation (Uα,ϕα). Then Z(s) is given by f ∈ H0

X , K∗
 ∗

, where fα = f |Uα =

ϕα(s|Uα). Then  (Z(s)) is the line bundle with associated cocycle data being (Uα, fα f −1
β
). But:

fα f −1
β = ϕα(s|Uα)ϕβ (s|Uβ )−1 = ϕαβ

as in Proposition 3.6, and thus this line bundle is just L as the cocycle data is the same.

(ii): Let D ∈ Div(X ) be given by (Uα, fα), with fα ∈ K∗(Uα). Then as D is effective we know the fα
are holomorphic. The line bundle  (D) is associated to the cocycle data (Uα,ϕαβ ), where ϕαβ =
fα
fβ


Uα∩Uβ

. Then fα ∈  (Uα) glue to a global section s ∈ H0(X , (D)) as fα = ϕαβ fβ on Uα ∩ Uβ .

Moreover,
Z(s)|Uα = Z(s|Uα) = Z( fα) = D ∩ Uα

and so Z(s) = D (note by D ∩ Uα we just mean

β aβ

Yβ ∩ Uα


if D =

β aβYβ). □
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Note that the s found in Proposition 3.7(ii) is not unique: if λ ∈ H0(X , ∗) (e.g. λ ∈ C∗) then
Z(λs) = Z(s). It turns out on non-compact manifolds s is highly non-unique, but on compact ones
we get uniqueness up to multiplication by such a λ.

Corollary 3.1. Let s ∈ H0(X , L) and s̃ ∈ H0(X , L̃). Then:

Z(s)∼ Z(s̃) ⇐⇒ L = L̃.

Proof. This follows as  (Z(s)) ∼= L and we know ker( ) = {principle divisors}. Thus  (D) ∼=  ⇔
D is principle.

□

Recall the exponential s.e.s:

0    ∗ 02πi exp

where  is denotes the constant sheaf. The l.e.s in cohomology and the fact that Pic(X )∼= H1(X , ∗)
(from Proposition 3.3) gives a map (via the first chain map):

c1 : Pic(X )→ H2(X ,).

Definition 3.27. For L ∈ Pic(X ), we call c1(L) ∈ H2(X ,) the first Chern class of L.

We will return to Chern classes later in the course.
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4. KÄHLER MANIFOLDS

Recall: A complex manifold X is projective if it is biholomorphic to a closed submanifold of m for
some m.

Definition 4.1. We say that a line bundle on X is ample if there is an embedding i of X into m

for some m and ∃ a k ∈ >0 such that
L⊗k ∼= i∗( (1))

where  (1) is the hyperplane line bundle on m.

Kähler geometry (in part) gives a differential geometric interpretation of amplitude (i.e. ampleness),
which we shall look into more now.

4.1. Kähler Linear Algebra.

Just as we did for complex structures we will start with some linear algebra. The goal is to put
Riemannian metrics on complex manifolds which interact well with the complex structure.

Let V be a real finite dimensional vector space and let J : V → V be a complex structure (so J2 = −id).
Let 〈·, ·〉 be an inner product on V .

Definition 4.2. We say that 〈·, ·〉 is compatible with the complex structure J if:

〈J(u), J(v)〉= 〈u, v〉 ∀u, v ∈ V.

Definition 4.3. If 〈·, ·〉 is compatible with J, we then define the fundamental (2-)form ω by:

ω(u, v) := 〈J(u), v〉.

Note that ω is antisymmetric, since:

ω(u, v) = 〈J(u), v〉= 〈J2(u), J(v)〉= 〈−u, J(v)〉= −〈J(v), u〉= −ω(v, u)

where we have used the compatibility assumption and the symmetry of the inner product.

We now extend these notions to the complexification V := V ⊗ . The inner product extends to a
hermitian inner product via:

〈λu,µv〉 := λµ〈u, v〉 ∀λ,µ ∈ , u, v ∈ V

and using that any α ∈ V can be written as α= α1 + iα2 for α1,α2 ∈ V .

We assume that 〈·, ·〉 is compatible with J throughout, so that ω exists. We can then extend ω to V
via ω(u, v) := 〈J(u), v〉, where J here is the natural extension of J onto V via acting on the V part
of V.
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Lemma 4.1. We have the following:

(i) The decomposition V := V (1,0)⊕V (0,1) from before is orthogonal w.r.t. the hermitian inner
product 〈·, ·〉.

(ii) ω ∈ Λ1,1V ∗ , i.e. the fundamental form is a (1, 1)-form.

Proof. (i): Let u ∈ V (1,0), v ∈ V (0,1). Then J(u) = iu and J(v) = −iv, and so

〈u, v〉 = 〈J(u), J(v)〉 = 〈iu,−iv〉 = i2〈u, v〉 = −〈u, v〉 =⇒ 〈u, v〉 = 0

where we have used compatibility and the fact that 〈·, ·〉 is conjugate-linear in the second compo-
nent.

(ii): Let u, v ∈ V (1,0). Then,

ω(u, v) = 〈J(u), v〉 = 〈J2(u), J(v)〉 =ω(J(u), J(v)〉
by compatibility. So hence

ω(u, v) =ω(J(u), J(v)〉=ω(iu, iv) = i2ω(u, v) = −ω(u, v) =⇒ ω(u, v) = 0.

Similarly if u, v ∈ V (0,1) then we haveω(u, v) = 0. So henceω is only non-zero on V (1,0)×V (0,1) and
V (0,1) × V (1,0), and thus ω ∈ Λ1,1V ∗ .

□

4.2. Kähler Geometry.

Now let X be a complex manifold with almost complex structure (a.c.s) J . Recall from differential
geometry:

Definition 4.4. A Riemannian metric g on X is a section of T ∗X ⊗ T ∗X such that for all x ∈ X ,
gx : Tx X × Tx X →  is an inner product.

Definition 4.5. A Riemannian metric g on X is compatible with J if for all x ∈ X , the inner
product gx on Tx X is compatible with the complex structure Jx : Tx X → Tx X .

We can then define ω, the fundamental form, by

ω(u, v) := g(J(u), v).

ω extends −linearly to a (1, 1)−form ω ∈ Λ1,1(T ∗X ) as we saw in the linear algebra case.

The extension g of g gives a hermitian metric (by definition) on (T X ) and hence on T X (1,0). Sup-
pose on X we have holomorphic coordinates z1, . . . , zn. Then dz1, . . . , dzn form a local holomorphic
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frame for T ∗X (1,0). Let:

h jk := 2g


∂

∂ z j
,
∂

∂ zk


.

Exercise: Show that (h jk) jk is a hermitian matrix and that

ω =
i
2



j,k

h jkdz j ∧ dzk.

Definition 4.6. We say that ω is a Kähler form (or Kähler metric) on X if in addition we have
dω = 0, i.e. ω is closed.

We then say [ω] ∈ H2(X ,) is a Kähler class.

Definition 4.7. We call a complex manifold a Kähler manifold if it has a Kähler metric. We write
(X ,ω) for the Kähler manifold.

Example 4.1. On n with coordinates z1, . . . , zn, ω = i
2

n
j=1 dz j ∧ dz j is a Kähler metric.

Example 4.2. By a standard partition of unity argument, any complex manifold admits a hermit-
ian metric. Moreover if g is a Riemannian metric, then

g̃(u, v) = g(u, v) + g(J(u), J(v))

is a hermitian metric compatible with J. Then if dim(X ) = 1 (i.e. a Riemann surface) then every
(1, 1)−form is automatically closed, and thus we get lots of Kähler forms on Riemann surfaces.

Note: Knowing any two of g, J ,ω determines the third completely.

Remark: Any Kähler metric induces a symplectic form on X . Thus Kähler geometry (i.e. the study
of complex manifolds with Kähler forms) lies in the intersection of complex geometry, Riemannian
geometry (as have a Riemannian metric) and symplectic geometry. This is in some sense why the
theory of Kähler geometry is so rich.

Crucially, (complex) projective space has a Kähler form, as per the following Example 4.3.

Example 4.3 (The Fubini-Study metric on n). Let U ⊂ n be open and let π : n+1\{0}→ n

be the natural projection. Suppose s : U → n+1 is a holomorphic lift of π, i.e. π(s(z)) = z for all
z ∈ U (e.g. if U = U j = {[z0 : · · · : zn | z j ∕= 0}, then s([z0 : · · · : zn]) =

1
z j
(z0, . . . , zn)).

Let
ωFS |U :=

i
2π
∂ ∂

log(s2)
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where  · is the Euclidean norm on n+1. We need to check that this is well-defined (i.e. agrees on
overlaps), closed and positive definite.

TO see if is well-defined, choose another s′ defined on U ′. Then we know s′ = f s for some f ∈
 ∗(U ∩ U ′), and

i
2π
∂ ∂

log(s′2)

=

i
2π
∂ ∂

log(| f |2s2)

=

i
2π
∂ ∂

log(| f |2) + log(s2)


=ωFS |U

as ∂ ∂

log(| f |2)

= ∂ ∂

log( f ) + log( f )


= 0. Thus ωFS is well-defined on all of n.

Next, to see that it is closed, note that (∂ +∂ )(∂ −∂ ) = ∂ 2+∂
2
+∂ ∂ −∂ ∂ = 2∂ ∂ since ∂ 2 = 0= ∂

2

and ∂ ∂ = −∂ ∂ and so

2ωFS =
i

2π
(∂ + ∂ )(∂ − ∂ )


log(s2)

= d


i
2π
(∂ − ∂ ) log(s2)



and so ωFS is exact, and thus closed.

Finally we know that locally we can write

ωFS =
i
2



j,k

h jkdz j ∧ dzk

and to see ωFS is positive definite we need to show that (h jk) jk is a positive definite hermitian
matrix. To see this, we work on U0 (the proof for the other U j is identical). Set w j =

z j
z0

. Then:

ωFS |U0
=

i
2π
∂ ∂ log


1+


j

|w j |2


=
i

2π
∂

 
j w jdw j

1+


j |w j |2



=
i

2π





j dw j ∧ dw j

1+


j |w j |2
−


j w jdw j


∧


j w jdw j




1+


j |w j |2
2




=
i

2π



j,k


1+


l |wl |2

δ jk − w jwk

1+


l |wl |2  
=:h jk

dw j ∧ dwk

=
i

2π



j,k

h jkdw j ∧ dwk.

Then if 0 ∕= u ∈ n (ignoring the positive denominator of the h jk):

uT (h jk) jku= 〈u, u〉+ 〈w, w〉〈u, u〉 − 〈u, w〉〈w, u〉
= 〈u, u〉+ 〈w, w〉〈u, u〉 − |〈w, u〉|2
> 0 by Cauchy-Schwarz.

Hence this is positive definite and so ωFS is a Kähler metric on n. □
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Proposition 4.1. Let (X ,ω) be a Kähler manifold. Then any complex submanifold i : Y → X is
Kähler.

Proof. Since d commutes with pullbacks we have

d(i∗ω) = i∗(dω) = i∗(0) = 0.

Moreover clearly i∗ω is positive definite on Y since ω is on X . Thus i∗ω is a Kähler form on Y and
so Y is Kähler.

□

Corollary 4.1. Any projective manifold is Kähler.

Proof. Apply Proposition 4.1 since n is Kähler for any n. □

In general, using the hermitian metric h = g on T X (1,0), choose a unitary frame {ϕ1, . . . ,ϕn} of
T ∗X (1,0) on a neighbourhood U of x ∈ X so that h=


j ϕ j ⊗ϕ j . Let η j = Re(ϕ j), ξ j = Im(ϕ j). One

can then check:

g = Re



j


η j + iξ j


⊗

η j − iξ j



=


j


η j ⊗η j + ξ j ⊗ ξ j



with volume form

dVol= η1 ∧ ξ1 ∧ · · ·∧ηn ∧ ξn.

Now,

ω =
i

2π



j


η j + iξ j


∧

η j + iξ j


=

i
2π



j

η j ∧ ξ j .

Thus we see:
ωn

n!
= dVol

(up to a factor of 2π), and so a Kähler form gives a volume form. In particular, when X is compact
we have 

X
ωn > 0.

So if ω is a Kähler metric associated to a Riemannian metric g, we have a corresponding volume
form given by dVol=ωn/n!.

Proposition 4.2. If X is a compact Kähler manifold, then dim

H2q

dR(X ,)

> 0 for all q ∈

{1, . . . , 1
2 dim(X )}, i.e. all the even Betti numbers are > 0.

50



Complex Manifolds Paul Minter

Proof. Let ω be a Kähler metric, and set τ =
q times  

ω∧ · · ·∧ω. Then dτ = 0 as dω = 0, and so [τ] =
H2q

dR(X ,). We just need to show that this class is non-zero, i.e. τ is not exact.

Suppose τ= dσ for some σ ∈(X ). Then we would have


X
ωn =



X
ωn−q ∧τ=


X
d(ωn−q ∧σ) = 0

and this is 0 by Stoke’s theorem (as X is compact so has no boundary). But we know


X ω
n > 0, and

so this is a contradiction. Hence τ is not exact and so [τ] ∈ H2q
dR(X ,)\{0}.

□

Thus Proposition 4.2 tells us that there is a topological obstruction for a compact complex manifold
to be Kähler, namely all even order de Rham cohomology groups must be non-trivial - see Example
Sheet 3.

Remark: We saw in Corollary 4.1 that every (smooth) projective manifold is Kähler. Recall to any
L ∈ Pic(X ) we defined c1(L) ∈ H2(X ,) ⊂ H2(X ,). We are working towards the Kodaira embedding
theorem, which states that on a compact complex manifold, a class α ∈ H2(X ,) is a Kähler class
(i.e. ∃ω Kähler with ω ∈ α) if and only if α = c1(L) for some ample L ∈ Pic(X ). This gives a
complex differential geometric interpretation of ampleness, and characterises which compact Kähler
manifolds are projective. [These results also won the Fields Medal at one point.]

Proposition 4.3. Let ω be a (1, 1)-form associated to a hermitian metric h on X . Then:
dω = 0 ⇐⇒ ∃ holomorphic coordinates z1, . . . , zn about x s.t. locally

ω =
i
2



j,k

h jkdz j ∧ dzk with h jk = δ jk +O(|z|2)

where δ jk is the Dirac-delta. Thus:

ω is Kähler ⇐⇒ ω =ω0 +O(|z|2)
where ω0 is the usual Kähler form on n.

Remark: This result is very useful and we will use it a fair bit - it tells us that any identity valid on
n (with its usual Kähler metric) which only involves the metric h and its first order derivatives, is
true on any Kähler manifold (essentially because the above tells us we can kill off the linear term).

Proof. We will use summation convention, but i will also be

−1, not an index.

(⇐): Say ω = i
2h jkdz j ∧ dzk. Then

dω =
i
2

∂ h jk

∂ zl
dzl ∧ dz j ∧ dzk +

i
2

∂ h jk

∂ z l
dz l ∧ dz j ∧ dzk.

Thus if h jk = δ jk +O(|z|2), then
∂ h jk

∂ zl
(x) = 0 and so dω = 0.
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(⇒) : Suppose dω = 0. Write ω = i
2h jkdz j ∧ dzk. By a linear change of coordinates we may assume

h jk(x) = δ jk (at this one point x). The Taylor series expansion of h jk then looks like

h jk = δ jk + a jklzl + b jklz l +O(|z|2).

As h is hermitian we have h jk = hk j and thus b jkl = ak jl . But then as dω = 0,

0= a jkldzl ∧ dz j ∧ dzk + b jkldz l ∧ dz j ∧ dzk

and thus we must have (due to these wedge products forming a basis) a jkl = alk j and b jkl = b jlk.

Now let ζk = zk +
1
2 a jklz jzl , which is a valid change of coordinates in a neighbourhood of x . Then:

dζk = dzk +
1
2

a jkl


z jdzl + zldz j


= dzk + a jklz jdzl

dζk = dzk +
1
2

a jkl


z jdz l + z ldz j


= dzk + a jklz jdz l

using the symmetries of a jkl , and so now we can compute

dζk ∧ dζk = dzk ∧ dzk + a jklz jdzk ∧ dz l + a jklz jdzl ∧ dzk +O(|z|2)
= dzk ∧ dzk + a jklzldz j ∧ dzk + b jklz ldz j ∧ dzk +O(|z|2)

=
2
i
ω+O(|z|2)

and so as in these coordinates dζk ∧ dζk =ω0, we are done.

□

4.3. Kähler Identities.

Let (X , g) be an oriented Riemannian manifold of dimension 2n. The exterior derivative d : k →
 k+1 we know satisfies d2 = 0. Let dVol be the volume form associated to g.

Definition 4.8. The Hodge star operator is the map ∗ : k → 2n−k which is uniquely deter-
mined by the relation:

α∧ (∗β) = 〈α,β〉g dVol ∀α,β ∈ k.

Definition 4.9. The L2-adjoint of d is the map d∗ : k→ k−1 defined by:

d∗ := − ∗ d ∗ .

We will see later that d∗ is actually the adjoint of d with respect to an appropriate L2 inner product.

Definition 4.10. The Laplacian ∆d : k→ k is defined by:

∆d := d∗d+ dd∗.
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Now suppose X is a complex manifold of dimension n, with Riemannian metric g compatible with
J . Then the Hodge star operator extends naturally to ∗ : k

 → 2n−k
 in such a way so that

α∧ (∗β) = g(α,β) · dVol.

Remark: If α ∈ k
 we have ∗ ∗α= (−1)k(2n−k)α, and thus ∗−1 = (−1)k(2n−k)∗.

Now write d= ∂ + ∂ as usual, where ∂ : p,q→ p+1,q and ∂ : p,q→ p,q+1.

Definition 4.11. Define the L2-adjoints of ∂ and ∂ by:

∂ ∗ := − ∗ ∂ ∗ and ∂
∗
= − ∗ ∂ ∗

and define the associated Laplacian’s:

∆∂ := ∂ ∗∂ + ∂ ∂ ∗ and ∆
∂

:= ∂
∗
∂ + ∂ ∂

∗
.

Definition 4.12. If ω is Kähler, define the Lefschetz operator L : p,q→ p+1,q+1 by:

L(α) := α∧ω.

Also define the contraction (or inverse Lefschetz operator) Λ : p,q→ p−1,q−1 by

Λ := ∗−1 L ∗ .

Definition 4.13. For α,β ∈ p,q we define the L2-inner product by:

〈α,β〉L2 :=



X
α∧ (∗β)

≡


X
g(α,β) dVol


.

Lemma 4.2. Let X be a compact Kähler manifold. Then the operators ∂ ∗ and ∂
∗

are the L2-adjoints
of the operators ∂ and ∂ respectively, i.e.

• if α ∈ p,q and β ∈ p+1,q then

〈∂ α,β〉L2 = 〈α,∂ β〉L2

• if α ∈ p,q and β ∈ p,q+1 then

〈∂ α,β〉L2 = 〈α,∂ β〉L2 .

Proof. We only prove the first identity as the second is very similar. By Stoke’s theorem we have (as
X is compact)

0=



X
d (α∧ (∗β)) =


X
∂ (α∧ (∗β))
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where the second equality is because α ∧ (β) ∈  p+(n−(p+1)),n =  n−1,n and so ∂ (α∧ (∗β)) = 0.
So,

0=



X
∂ (α∧ (∗β)) =


X
∂ α∧ (∗β) + (−1)kα∧ ∂ (∗β)

where p+ q = k. Thus

〈∂ α,β〉L2 =



X
∂ α∧ (∗β)

= (−1)k+1



X
α∧ (∂ ∗ β)

= (−1)k+1



X
α


(−1)k(2n−k) ∗ (∗∂ ∗ β)  

=−∂ ∗β


 as (−1)k(2n−k) ∗ ∗= id

= −(−1)k+1+k(2n−k)
  

=1 ∀k



X
α∧ ∗(∂ ∗β)

=



X
α∧ (∗∂ ∗β)

=: 〈α,∂ ∗β〉L2 .

□

We now work towards proving the Kähler identities, which say

[∂
∗
, L] = i∂ , [∂ ∗, L] = −i∂ , [Λ,∂ ] = −i∂ ∗, [Λ,∂ ] = i∂

∗
.

We begin by proving these on n with the standard Kähler metric. In this case we have

ω =
i
2



j

dz j ∧ dz j and g =
1
2



j

dz j ⊗ dz j .

Definition 4.14. For α ∈ k
 , ξ ∈ 1

 , we define the cup operator, ξ∨α ∈ k
 by:

g(ξ∨α,β) = g(α,ξ∧ β) ∀β ∈ k−1
 .

This operator exists and is well-defined as g is non-degenerate (this is just an exercise in linear
algebra to see, e.g. dz1 ∨α= α


∂
∂ z1

, ·, · · · , ·

).

If α ∈ k
 then (using multi-index notation) we can write

α=


|I |+|J |=k

αI JdzI ∧ dzJ

and we then define:

∂ jα :=


|I |+|J |=k

∂ αI J

∂ z j
dzI ∧ dZ J and ∂ jα=



|I |+|J |=k

∂ αI J

∂ z j
dzI ∧ zJ
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so that
dα=


j


dz j ∧ ∂ jα+ dz j ∧ ∂ jα


.

Lemma 4.3. We have dz j ∨ dzk = 0 and dz j ∨ dzk = δ jk for all j, k.

Proof. By definition,
dz j ∨ dzk = g(dz j , dzk) = 0

and
dz j ∨ dzk = g(dz j , dzk) = δ jk.

□

Lemma 4.4. We have the following:

(i) ∂ α=


j dz j ∧ ∂ jα.

(ii) ∂ j g(α,β) = g(∂ jα,β〉+ g(α,∂ jβ).

(iii) ∂ j (dzk ∨α) = dzk ∨ ∂ jα.

Proof. (i): Follows from the definition of ∂ .

(ii): Follows as the metric is the standard one, so:

∂ j g(α,β) = ∂ j



I ,J

αI Jβ I J


=


I ,J


∂ jαI J


β I J +αI J∂ jβ I J



and the result then follows, noting that ∂ jβ I J = ∂ jβI J .

(iii): Follows as ∂ j commutes with dzk∨, which follows since it commutes with dzk∧. Explicitly, using
(ii), for any β :

g

∂ j(dzk ∨α),β

= ∂ j


g (dzk ∨α,β)

− g

dzk ∨α,∂ jβ


= ∂ j g (α, dzk ∧ β)− g

α, dzk ∧ ∂ jβ


= g

∂ jα,∂ j (dzk ∧ β)


using (ii) again

= g

dzk ∨ ∂ jα,β


and thus as β was arbitrary and g is non-degenerate we are done.

□

Lemma 4.5. ∂
∗
α= −


j dz j ∨ ∂ jα.
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Proof. Let α ∈  k
 , and let β ∈  k−1

 have compact support. Then by Stoke’s theorem (where dVol
is the standard volume form): 

n

∂ j g(dz j ∨α,β) dVol= 0.

Bt we have

0=



n

∂ j g

dz j ∨α,β


dVol=

∂ j(dz j ∨α),β


L2 +

dz j ∨α,∂ jβ


L2

=

dz j ∨ ∂ jα,β


L2 +

dz j ∨α,∂ jβ


L2
(‡)

using Lemma 4.4(iii). Thus as
〈∂ ∗α,β〉L2 = 〈α,∂ β〉L2

as these are L2-adjoints and since

〈α,∂ β〉L2 =


j


α, dz j ∧ ∂ jβ


L2 =


j


dz j ∨α,∂ jβ


L2
= −


j


dz j ∨ ∂ jα,β


L2

by (‡), this gives the result as it shows it holds for all β with compact support.

□

Lemma 4.6. On n with the standard metric we have

[∂
∗
, L] = i∂ .

Proof. We have by definition of the commutator and of L,

[∂
∗
, L]α= ∂

∗
(Lα)− L(∂

∗
α) = ∂

∗
(ω∧α)−ω∧ (∂ ∗α).

Now note that by Lemma 4.5,

∂
∗
(ω∧α) = −


j

dz j ∨ ∂ j(ω∧α)

= −


j

dz j ∨

∂ jω∧α+ω∧ ∂ jα


.

But as ω is the standard Kähler form we know ∂ jω = 0 and thus

∂
∗
(ω∧α) = − i

2



j,k

dz j ∨

dzk ∧ dzk ∧ ∂ jα


(by Lemma 4.3) = − i
2



j,k




dz j ∨ dzk


  

=0

∧dzk ∧ ∂ jα− dzk ∧

dz j ∨ dzk


  

=δ jk

∧∂ jα+ dzk ∧ dzk ∧

dz j ∨ ∂ jα




= 0+
i
2



k

dzk ∧ ∂kα−
i
2
ω∧


j

dz j ∨ ∂ jα

= i∂ α+ω∧ ∂ ∗α
where we have used Lemma 4.5. Thus we see

[∂
∗
, L]α= i∂ α+ω∧ ∂ ∗α−ω∧ ∂ ∗α= i∂ α
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as required. □

Theorem 4.1 (Kähler Identities). For X a Kähler manifold we have

(i) [∂
∗
, L] = i∂

(ii) [∂ ∗, L] = −i∂

(iii) [Λ,∂ ] = −i∂
∗

(iv) [Λ,∂ ] = i∂
∗
.

Proof. (i): Asω is Kähler, around any x ∈ X ∃ coordinates za, . . . , zn in whichω =ω0+O(|z|2), where

ω0 is the standard metric on n. Now as [∂
∗
, L] only involves the metric and the first derivative of

its coefficients, (i) follows from the result on n (Lemma 4.6).

(ii): Follows from (i) by conjugation and using the fact that ω is real.

(iii) + (iv): These follow from (i) and (ii) by taking adjoints.

□

Theorem 4.2. On a Kähler manifold (X ,ω) we have ∆d = 2∆∂ = 2∆
∂

.

Remark: This is not true on arbitrary complex manifolds.

Proof. We claim that

∂
∗
∂ + ∂ ∂

∗
= 0 and ∂ ∗∂ + ∂ ∂ ∗ = 0.

Indeed, the Kähler identities give ∂
∗
= −i〈[Λ,∂ ] and so

∂
∗
∂ + ∂ ∂

∗
= −i[Λ,∂ ]∂ − i∂ [Λ,∂ ]
= iΛ∂ ∂ + i∂Λ∂ − i∂Λ∂ + i∂ ∂Λ

= 0 as ∂ 2 = 0.

Similarly we have ∂ ∗∂ + ∂ ∂ ∗ = 0 (either proof in same way or just take adjoints).

Next we show that ∆d =∆∂ +∆∂ . Indeed,

∆d = d∗d+ dd∗

= (∂ ∗ + ∂
∗
)(∂ + ∂ ) + (∂ + ∂ )(∂ ∗ + ∂

∗
)

=∆∂ +∆∂
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as several terms now cancel by the previous observation. Finally we show that ∆∂ = ∆∂ . By the
Kähler identities:

∆∂ = ∂ ∂
∗ + ∂ ∗∂ = i∂ [Λ,∂ ] + i[Λ,∂ ]∂

= i∂Λ∂ − i∂ ∂Λ+ iΛ∂ ∂ − i∂Λ∂

and

∆
∂
= ∂ ∂

∗
+ ∂
∗
∂ = −i∂ [Λ,∂ ]− i[Λ,∂ ]∂

= −i∂Λ∂ + i∂ ∂Λ− iΛ∂ ∂ + i∂Λ∂

=∆∂

since ∂ ∂ = −∂ ∂ . So we are done.

□

Lemma 4.7. Let α ∈ p−1,q−1(X ), β ∈ p,q(X ). Then,

g(Lα,β) = g(α,Λβ).

Proof. We have

g(Lα,β) dVol= (Lα)∧ (∗β) by definition of ∗
= (ω∧α)∧ (∗β) by definition of L

= α∧ω∧ (∗β) as ∧ is associative and graded commutative

= g(α,∗−1 L ∗ β) dVol by definition of ∗ again

= g(α,Λβ) dVol by definition of Λ.

□

Theorem 4.3 (Kähler Identities II). Let (X ,ω) be Kähler. Let πk : ∗ → k
 be the projection,

and define

H =
2n

k=0

(n− k)πk (the counting operator).

Then:

(i) H,Λ, L commute with ∆d

(ii) [Λ, L] = H, [H, L] = −2L, [H,Λ] = 2Λ.

Proof. We first consider commutators with H. By linearity, it suffices to prove these results for some
α ∈ p,q, where p+ q = k.

For such α we have

[H,∆d]α= H(∆dα)−∆d(Hα) = (n− k)∆dα− (n− k)∆dα= 0
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and so H commutes with ∆d. Also,

[H, L]α= H(Lα)− L(Hα) = (n− (k+ 2))Lα− L(n− k)α= −2Lα

i.e.
[H, L] = −2L

since L :  p,q →  p+1,q+1. Then taking adjoints and using that H = H∗ (i.e. g(Hα,β) =
g(α, Hβ) always) gives

[H,Λ] = 2Λ.
Showing that L commutes with ∆d, i.e. [L,∆d] = 0, is equivalent to asking ∆dω = 0 (from the
definition of L), i.e. we need to show that ω is harmonic. Showing this is an exercise on Example
Sheet 3.

Also since ∆d = ∆∗d is self-adjoint, we also see [Λ,∆d] = 0. Thus we have shown H,Λ, L commute
with ∆d.

Lastly we need to show [Λ, L] = H, that is, if α ∈ p,q then:

[Λ, L]α= (n− p− q)α.

This involves no derivatives, and so it holds for (X ,ω) if it holds for n w.r.t the standard Kähler
metric. We check this explicitly. When n= 1 we have

Λ


i
2

g(z)dz ∧ dz

= g(z)

and so the identity holds. In general, write L =


j L j , where L jα =
i
2dz j ∧ dz j ∧ α, and write

Λ =


j Λ j , where Λ j = L∗j removes dz j ∧ dz j if α has a dz j ∧ dz j term and if not Λ jα = 0 (up to the
appropriate dimensional constant).

Then [L j ,Λl] = 0 if j ∕= l, and so this reduces to (a small variant of) the one dimensional case, Then
by linearity one reduces to

α=
i
2

dz j ∧ dz j ∧ α̂
where α̂ ∈ p−1,q−1. Then [Λ j , L j]α= (n− p− q)α, as in the one-dimensional case.

□

Remark: See Huybrechts, Proposition 1.2.26 for a proof of Theorem 4.3 which carefully keeps track
of the constants.
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5. HODGE THEORY

We wish to understand the Dolbeault cohomology groups H p,q

∂
(X ) and how they compare with

Hk(X ,) (the singular cohomology), where k = p + q. We begin by picking canonical represen-
tatives of cohomology classes.

Definition 5.1. Given an oriented Riemannian manifold (X , g), we define the space of harmonic
forms of degree k to be:

 k(X , g) := {α ∈ k(X ) : ∆dα= 0}.
Each element α ∈ k(X , g) is called a harmonic k-form.

Remark: On n with the Euclidean metric, if f ∈ C∞(n), then ∆d f = ∆ f , where ∆ is the usual
Laplacian on n. So ∆d f = 0 if and only if f is harmonic in the classical sense.

Lemma 5.1. For (X ,ω) a compact Kähler manifold (without boundary always!) we have

∆
∂
α= 0 ⇐⇒ ∂ α= ∂

∗
α= 0.

Proof. (⇐) : If ∂ α= 0= ∂
∗
α, then ∆

∂
α= 0 by definition of ∆

∂
.

(⇒) : Conversely, if ∆
∂
α= 0, then:

0= 〈∆
∂
α,α〉L2 = 〈(∂ ∗∂ + ∂ ∂ ∗)α,α〉L2

= 〈∂ α,∂ α〉L2 + 〈∂ ∗α,∂
∗
α〉

= ∂ α2L2 + ∂
∗
α2L2

and so we must have ∂ αL2 = 0= ∂ ∗αL2 , i.e. ∂ α= ∂
∗
α= 0.

□

If (X ,ω) is Kähler then we can show:

∆dα= 0 ⇐⇒ ∆
∂
α= 0 ⇐⇒ ∆∂α= 0.

So let
 p,q

∂
(X , g) := {α ∈ p,q(X ) : ∆

∂
α= 0}.

Recall from Differential Geometry the Hodge decomposition:

Theorem 5.1 (Hodge Decomposition for Riemannian Manifolds). Let (X , g) be a compact ori-
ented Riemannian manifold. Then there is an L2-orthogonal decomposition

 k(X )∼= k(X )⊕ d k−1(X )⊕ d∗ k+1(X ).

In particular the spaces k(X ) of harmonic forms are finite dimensional.
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Remark: Another way to write this result is:

 k(X )∼= k(X )⊕∆d( k(X ))

since
∆d k(X ) = dd∗ k(X )⊕ d∗d k(X ) = d k−1(X )⊕ d∗ k+1(X )

where we have used the Hodge decomposition above to show dd∗ k(X ) = d k−1(X ) and d∗d k(X ) =
d∗ k+1(X ) (e.g. for the first equality, one inclusion is clear, namely dd∗ k(X ) ⊂ d k−1(X ) since
d∗ k(X ) ⊂  k−1(X ), and then for the other inclusion suppose α ∈ d k−1(X ), then we can write
α = dβ for some β ∈  k−1(X ), and thus from the Hodge decomposition β = β1 + β2 + β3 where
β1 ∈ k−1(X ), β2 ∈ d k−2(X ), β ∈ k(X ). Then we have dβ = dβ3, because dβ2 = 0 clearly and
dβ1 = 0 by a similar argument to Lemma 5.1. Thus α = dβ = dβ3 = dd∗γ for some γ ∈  k(X ) by
definition of β3, i.e. α ∈ dd∗ k(X ) as we wanted).

Proof of Theorem 5.1. None given (uses the theory of elliptic PDEs). □

Theorem 5.2 (Hodge Decomposition for Kähler Manifolds). Let (X ,ω) be a compact Kähler
manifold. Then there is an L2-orthogonal decomposition:

 p,q(X )∼= p,q

∂
(X )⊕ ∂ p,q−1(X )⊕ ∂ ∗ p,q+1(X )

∼= p,q
∂
(X )⊕ ∂ p−1,q(X )⊕ ∂ ∗ p+1,q(X )

where by L2-orthogonal we mean orthogonal w.r.t the L2-inner product 〈α,β〉L2 =
X g(α,β) dVol.

Proof. None given. The proof uses techniques from Elliptic PDE theory (see Griffiths-Harris, §0.6 for
a discussion). □

Note: We always have
 p,q
∂
(X ) = p,q

∂
(X ) = p,q

d (X )

since ∆d = 2∆
∂
= 2∆∂ using the Kähler condition (Theorem 4.2).

Corollary 5.1. Every Dolbeault cohomology group has a unique harmonic representative, i.e. the
map p,q

∂
(X )→ H p,q

∂
(X ) sending α → α is an isomorphism.

Note: This map is well-defined as∆
∂
α= 0⇔ ∂ α= 0= ∂

∗
α. In particular if∆

∂
α= 0 then ∂ α= 0

and so α does define an element of H p,q

∂
(X ). So what this theorem tells us is that if ∂ α= 0, ∃α̃ with

[α̃] = [α] and ∂ α̃= ∂
∗
α̃= 0, i.e. we can change representative to assume wlog ∂

∗
α= 0 as well.

Proof. First note that this map exists/is well-defined, since if ∆
∂
α= 0 then ∂ α= 0.

First we show surjectivity. So let α ∈ p,q(X ) satisfy ∂ α = 0. By the Hodge decomposition we may
write

α= β1 + ∂ β2 + ∂
∗
β3

61



Complex Manifolds Paul Minter

with β1 harmonic. Thus we have

0= ∂ α= 0+ 0+ ∂ ∂
∗
β3.

But then this implies
0= 〈∂ ∂ ∗β3  

=0

,β3〉L2 = 〈∂ ∗β3,∂
∗
β3〉L2 = ∂ ∗β32L2

and so we need ∂
∗
β3 = 0. Thus we actually have

α= β1 + ∂ β2.

Hence [α] = [β1] ∈ H p,q

∂
(X ), with β1 harmonic. Thus this map is surjective.

We now show injectivity. Suppose α ∈  p,q

∂
(X ) is harmonic with 0 = [α] ∈ H p,q

∂
(X ). Then α = ∂ β

for some β . But α is harmonic, and so 0= ∂
∗
α= 0, which gives

∂
∗
∂ β = 0.

Hence just as before in the proof using the same L2-inner product argument we have ∂ β = 0, and
thus α= 0. Thus this map is injective and so is an isomorphism.

□

Corollary 5.2. THe map k
 (X )→ Hk

dR(X ,), α → α, is an isomorphism. That is, each de Rham
cohomology class is represented by a unique harmonic form.

Proof. Same as Corollary 5.1. □

Remark: The vector space p,q(X )
∼= H p,q

∂
(X )


admits the following operations:

(i) Conjugation α → α sends harmonic forms to harmonic forms (since, e.g. ∂ α = (∂ α) by
Kähler identities), and hence conjugation induces an isomorphism

 p,q(X )∼= q,p(X ).

This is not true for arbitrary compact complex manifolds as we are using the Kähler identities
(namely ∆∂α= 0 ⇔ ∆

∂
α= 0) - e.g. it fails for the Höpf surface.

(ii) The Hodge star operator α → ∗α sends harmonic forms to harmonic forms, since, e.g.
∂ ∗(∗α) = − ∗ ∂ α= 0 if α is harmonic, and thus ∗ induces an isomorphism

 p,q

∂
(X )∼= n−p,n−q

∂
(X ).

(iii) (Serre Duality) Consider the pairing p,q

∂
(X )× n−p,n−q

∂
→  defined by

(α,β) −→


X
α∧ β .

Then if α ∕= 0, then (α,∗α) →


X α∧ (∗α) = α2L2 > 0, and thus this gives an isomorphism:

 p,q

∂
(X )∼=

Hn−p,n−q

∂
(X )
∗
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(RHS is dual space). These isomorphisms induce symmetries and pairings on Dolbeault
cohomology groups using the canonical isomorphism  p,q

∂
(X ) ∼= H p,q

∂
(X ) (from Corollary

5.1).

(iv) The map L :  p,q(X ) →  p+1,q+1(X ), L(α) = ω ∧ α, satisfies [L,∆
∂
] = 0 (by the Kähler

identities, Theorem 4.3(i)) and thus L descends to a map

L : p,q

∂
(X )→ p+1,q+1

∂
(X ).

Now write hp,q := dim

H p,q

∂
(X )

, the dimension of a vector space. This is finite as X is compact.

The Hodge diamond is a convenient way to represent the above isomorphisms:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

. . .
...

. . .

hn,0 ... h0,n

. . . hn−1,n−1 . . .

hn,n−1 hn−1,n

hn,n

The rows are symmetric by conjugation. The columns are symmetric by the Hodge star operator.

Theorem 5.3. Let (X ,ω) be a compact Kähler manifold. Then there is a decomposition

Hk
dR(X ,) = Hk(X ,)∼=



p+q=k

H p,q

∂
(X )

and this decomposition is independent of the chosen Kähler metric.

Proof. The decomposition is induced by the Hodge decomposition:

Hk
dR(X ,)∼= k

∂
(X )∼=


p+q=k

 p,q

∂
(X )∼=


p+q=k

H p,q

∂
(X ).

Thus we just need to show that this decomposition is independent of the chosen ω. It suffices to
show that if α1 ∈  p,q

∂
(X ,ω1), α2 ∈  p,q

∂
(X ,ω2) have [α1] = [α2] = H p,q

∂
(X ), then [α1] = [α2] in

Hk
dR(X ,).

So since [α1−α2] = 0 in H p,q

∂
(X ), we have α1 = α2+∂ γ for some γ. Now since α1,α2 are d-harmonic

we have

d(∂ γ) = d(α1 −α2) = 0.

Next note that ∂ γ is L2-orthogonal to  p,q(X ,ω) be the Kähler Hodge decomposition theorem.
Then as  k

∂
(X ,ω) = k

d (X ,ω) (and the latter is independent of ω by definition of harmonic as it
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only depends on the matrix) we have that ∂ γ is orthogonal to k
d (X ,ω). Thus we have

〈∂ γ, d∗ϕ〉= 〈d∂ γ
=0

,ϕ〉= 0

and so this shows ∂ γ is orthogonal to d∗ k+1. Thus the Hodge decomposition gives ∂ γ ∈ d k−1(X ),
and thus [α1] = [α2] in Hk

dR(X ,).

□

Now we move on from Hodge theory and look at vector bundles and curvature.
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6. HERMITIAN VECTOR BUNDLES

Let E→ X be a complex vector bundle over a complex manifold X .

Definition 6.1. We define the complexified k-forms over E, k
(E), by:

 k
(E)(U) := k

(U)⊗ C∞(E)(U)

where C∞(E)(U) denotes the smooth sections of E.

Then from the splitting k
 =


p+q=k p,q we have a splitting

 k
(E) =


p+q=k

 p,q
 (E).

Definition 6.2. A hermitian metric h on E is a smoothly varying hermitian metric hx on the fibre
Ex over x ∈ X .

If e1, . . . , er is a local frame for E (so rank(E) = r) then (h jk) jk, where h jk = h(e j , ek), is a hermitian
matrix for each x ∈ X , whose coefficients vary smoothly with x . A partition of unity argument
produces hermitian metrics on any complex vector bundle.

Exercise: If E, F have hermitian metrics, then E ⊕ F , E ⊗ F , E∗, Λ j E all admit natural hermitian
metrics.

We now take E to be holomorphic as well.

Proposition 6.1. There is a natural  linear operator ∂ E : p,q
 (E)→

p,q+1
 (E) satisfying:

∂ E(α⊗ s) = (∂ α)⊗ s+α⊗ (∂ Es) ∀α ∈ p,q
 (U), s ∈ C∞(E)(U).

Proof. In a local holomorphic frame (e1, . . . , er) we define

∂ E(α⊗ e j) := (∂ α)⊗ e j .

To see this is well-defined suppose we have this for one frame (e′j) j , and let e j =
r

l=1ϕ jl e
′
l define

another local frame (el)l , so that the ϕ jl are local holomorphic functions. Then

∂ E(α⊗ e j) = ∂ E


α⊗


l

ϕ jl e
′
l


and by definition of ∂ E(ϕ jl ⊗α),

=


l

ϕ jl∂ α⊗ e′l as the ϕ jl are holomorphic so ∂ ϕ jl = 0

= ∂ α⊗


l

ϕ jl ⊗ e′l

= ∂ α⊗ e j
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and so this is true independent of the choice of local frame, and thus it can be defined/extended to
all of p,q

 (E) as we wanted.

□

Definition 6.3. A connection of a complex vector bundle is a sheaf morphism

D : 0
(E)→ 1

(E)

such that D( f s) = d f ⊗ s+ f Ds for all f ∈ C∞(U), s ∈ 0(E)(U).

Now if e1, . . . , er is a local frame for E, this gives rise to a connection matrix via:

De j =


l

Θ jl el

where Θ = (Θ jl) jl is a matrix of 1-forms (i.e. we can just write De j in the basis).

Definition 6.4. Let E be a holomorphic vector bundle. We then define D′ : 0
(E)→

1,0
 (E), D′′ :

 0
(E)→

0,1
 (E) to be the projections of D onto the components 1

(E) =
1,0
 (E)⊕

0,1
 (E),

i.e.
D = D′ + D′′.

We then say D is compatible with the holomorphic structure if D′′ = ∂ E : 0
(E)→

0,1
 (E).

Proposition 6.2 (Local characterisation of connection and holomorphic structure compatibil-
ity). Let D be a connection on E. Then we have:

D is compatible with the ⇐⇒ For all local holomorphic frames, the connection

holomorphic structure matrix (Θ jl) jl is given by a matrix of (1, 0)-forms.

Proof. (⇒): Suppose D is compatible. Then the (0, 1)-part of (Θ jl) jl vanishes, since De j =


l Θ jl el
and the el are holomorphic (i.e. vanishing locally gives vanishes globally).

(⇐) : Conversely, if (e1, . . . , er) is a local frame and α j ∈ C∞(U) then

D



j

α je j


=


j


dα j ⊗ e j +α j De j


.

Then projecting onto the (0, 1)-part (as the connection matrix only has (1, 0)-forms and so do not
need to worry about De j term) we get

D′′


j

α je j


=


j

∂ α j ⊗ e j

but this was our local definition of ∂ E . Thus we are done.

□
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Definition 6.5. Let (E, h) be a hermitian vector bundle. Then we say D is compatible with h if:

d [(α,β)h] = (Dα,β)h + (α, Dβ)h ∀α,β ∈ 0(E).

Proposition 6.3 (Characterisation of connection and metric compatibility). Let D be a connec-
tion on E and suppose h is a hermitian metric on E. Then:

D is compatible with h ⇐⇒ for every unitary frame (e1, . . . , er) the connection matrix is

skew-hermitian, i.e. Θ jl = −Θl j .

Proof. (⇒) : If (e1, . . . , er) is a unitary frame, then (e j , el)h = δ jl . Then,

0= d(e j , el)h = (De j , el)h + (e j , Del)h

=



k

Θ jkek, el



h

+


e j ,


k

Θlkek



h

= Θ jl +Θl j

and thus Θ is skew-hermitian.

(⇐): Conversely suppose (Θ jl) jl is skew-hermitian in any unitary frame. It suffices to show:

d(α,β)h = (Dα,β)h + (α, Dβ)h

holds locally (as this then implies it holds globally). But by the proof of the (⇒) direction (just
reversed) we see that this does hold when α,β ∈ {e1, . . . , er}.

Thus it suffices to show that d( f α,β)h = (D( f α),β)h+( f α, Dβ)h for any smooth function f (as any
such element can be written as a sum of the ei multiplied by smooth functions). But the LHS of this
is:

d( f α,β)h = d f ⊗ (α,β)h + f d(α,β)h
= d f ⊗ (α,β)h + f ((Dα,β)h + (α, Dβ)h)

and the RHS is:

(D( f α),β)h + ( f α, Dβ)h = (d f ⊗α,β)h + ( f Dα,β)h + ( f α, Dβ)h
= d f ⊗ (α,β)h + f (Dα,β)h + f (α, Dβ)h

and thus the two sides agree and we are done.

□

Now we shall see given a hermitian and holomorphic vector bundle (E, h), there is a unique connec-
tion which is compatible with both the hermitian metric and the holomorphic structure (compare
this with the Levi-Civita connection from Riemannian geometry).
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Proposition 6.4. Let (E, h) be a hermitian and holomorphic vector bundle. Then ∃! connection
compatible with both structures.

Definition 6.6. This connection in Proposition 6.4 is called the Chern connection.

Remark: In practice one typically has a hermitian holomorphic vector bundle, and the Chern con-
nection is the “canonical” extra information.

Proof. We begin with the uniqueness. Let (e1, . . . , er) be a local frame, and set h jk = h(e j , ek). Write

De j = Θ
k
j ek

where we are using summation convention (with upper and lower indices). Then,

dh jk = dh(e j , ek) = (De j , ek)h + (e j , Dek)h

=

Θl

jel , ek


h
+

e j ,Θ

l
kel


h

= Θl
jhlk +Θ

l
kh jl .

Now as D is compatible with the holomorphic structure, the matrix (Θl
j) is a matrix of (1, 0)-forms

(by Proposition 6.2). So,

∂ h jk = Θ
l
jhlk and ∂ h jk = Θ

l
kh jl .

Thus Θ = ∂ h · h−1, and so Θ is completely determined locally by the hermitian metric, and thus so
is D. Hence we have uniqueness.

This also constructs such a connection on each trivialisation. Then by uniqueness, these local con-
nections glue to a connection on all of (E, h) and so we are done.

□

Now we see some more results which have a familiar feel from Differential Geometry:

Lemma 6.1. If D1, D2 are two connections on a complex vector bundle, then D1− D2 is linear over
 0
(X ), and hence D1−D2 gives an element of 1

(End(E)), for End(E) the endomorphism bundle
(i.e. D1 − D2 :(E)→ 1

(E)).

Moreover if D is a connection on E and a ∈ 1
(End(E)), then D+ a is also a connection.

Proof. We have
(D1 − D2)( f s) = f D1s− f D1s = f (D1 − D2)(s)

using the definition of a connection as the d f ⊗ s terms cancel out. Thus the linearity over 0
(X ) is

clear.
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Now if a ∈  1
(End(E)) then a acts on  0(E) by multiplication in the form part and evaluation in

the E component (E × End(E)→ E). Then,

(D+ a)( f s) = D( f s) + a( f s) = (d f ⊗ s+ f Ds) + f a(s) = d f ⊗ s+ f (D+ a)(s)

and thus this shows D+ a is a connection.

□

Note that a connection D extends to a map D : p
 (E)→

p+1
 (E) via:

D(α⊗ s) := dα⊗ s+ (−1)pα∧ Ds for α ∈ p
 (U), s ∈ C∞(E)(U).

Definition 6.7. The curvature of the connection D is the map FD := D ◦ D : 0
(E)→ 2

(E).

Lemma 6.2. FD is linear over C∞(X ,).

Proof. For any f ∈ C∞(X ,) and s ∈ 0
(E) we have:

FD( f s) = D(d f ⊗ s+ f Ds) = d2 f
=0

⊗s−d f ⊗ Ds+ d f ⊗ Ds  
cancel

+ f D2s

= f D2s

= f FD(s).

□

Corollary 6.1. FD is induced by an element of  2
(End(E)), i.e. the curvature is a matrix of

2-forms.

Proof. By the above. □

It is often useful to have a local expression for the curvature in terms of the connection matrix. Let
e1, . . . , er be a local frame. Then connection matrix is given by:

Θe j = Θ
k
j ek

where the Θk
j are 1-forms. Given a local section s = s je j we have:

Ds = ds j ⊗ e j + s jΘk
j ek.

We write this relation as: D = d+Θ. In this notation we then have

FDs = D2s = (d +Θ)(d +Θ)s

= d2s+ (dΘ)s−Θ(ds) +Θ(ds) +Θ ∧Θs

= (dΘ+Θ ∧Θ)s
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i.e. FD = dΘ +Θ ∧Θ. However as the next lemma shows, we get more information about FD when
we know more about the structure of the connection.

Lemma 6.3 (Properties of the Curvature). We have the following:

(i) If (E, h) is hermitian and D is compatible with h, then

h(FDs j , sk) + h(s j , FDsk) = 0

i.e. FD is skew-hermitian.

(ii) If D is compatible with the holomorphic structure (so E holomorphic here), then FD has no
(0, 2)-component, i.e.

FD ∈ 2,0
 (End(E)) ⊕  1,1

 (End(E)).

(iii) If D is the Chern connection, then FD is a skew-hermitian from in 1,1
 (End(E)).

Proof. (iii): Comes just from combining (i) and (ii), since if the (0, 2)-component vanishes being
skew-hermitian implies that the (2, 0)-component also vanishes (since conjugation changes (2, 0)↔
(0, 2)).

(i): The statement is local, so it suffices to prove it locally. Let (e1, . . . , er) be a local unitary frame,
so D = d+Θ with Θ† = −Θ († being the hermitian conjugate). Then we have:

F†
D = (dΘ+Θ ∧Θ)† = (dΘ)† −Θ† ∧Θ†

= d(Θ†)−Θ† ∧Θ†

= −dΘ−Θ ∧Θ
= −FD

as required.

(ii): We know D : k
(E)→ k+1

 (E) splits as D = D′ + D′′, where D′ : p,q
 (E)→

p+1,q
 (E) and

similarly for D′′. Then D′′ = ∂ E by hypothesis. Thus,

D ◦ D = (D′ + ∂ E) ◦ (D′ + ∂ E) = D′ ◦ D′  
=0

+D′ ◦ ∂ E + ∂ E ◦ D  
maps into (1,1)

+∂ E ◦ ∂ E  
=0

and so the (0, 2)-component vanishes. □

Now if (L, h) is a hermitian holomorphic line bundle and if D is the corresponding Chern connection,
the above gives FD ∈  1,1

 (End(L)) is skew-hermitian, and thus FD is a real (1, 1)-form (as L is 1-
dimensional over  so is End(L)). In this we have Θ = h−1∂ h= ∂ log(h) (from before - see proof of
Proposition 6.4) and so

FD = ∂ ∂ log(h).

If X = n and L =  (1), there is a natural hermitian metric on  (−1) ∼= n+1\{0} → n arising
from the usual hermitian metric on n+1. This induces a hermitian metric on L =  (1). Then on
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U0 = {[z0 : · · · : zn] | z0 ∕= 0} we have the Fubini-Study metric,

ωFS =
i

2π
∂ ∂ log


1+


j

|z j |2


(as z0 = 1 by scaling), which is just i
2π FD, where FD is the curvature corresponding to the natural

hermitian metric on  (1).

Definition 6.8. We say that a line bundle L is positive if there is a hermitian metric h on L such
that i

2π FD is a Kähler metric on X (where FD is the curvature of the Chern connection of L).

Exercise: (See Example Sheet 4) Show that
 i

2π FD


∈ H2(X ,) is equal to c1(L), the first Chern

class of L (the image of H1(X , ∗ ∼= Pic(X )→ H2(X ,)).

Moreover this exercise shows:

L is positive ⇐⇒ c1(L) is a Kähler class.

[Recall that a Kähler class was one such that ∃ω ∈ c1(L) which is Kähler.]

On projective space, the line bundle  (1)→ n admits a hermitian metric hFS with curvature

ωFS =
i

2π
FD =

i
2π
∂ ∂ log(hFS)

(hFS Fubini-Study) which is Kähler. Thus  (1) is a positive line bundle.

Now more generally if ϕ : X → Y is a morphism and (E, h) → Y is a hermitian and holomorphic
vector bundle, then the pullback (ϕ∗E,ϕ∗h) is a hermitian and holomorphic vector bundle on X .
Moreover, if E = L is a line bundle, then FD = ∂ ∂ log(h) and

ϕ∗FD = ϕ
∗∂ ∂ log(h) = ∂ ∂ log(ϕ∗h)

(as pullbacks commutes with ∂ ,∂ and then by definition of the pullback on functions being evalua-
tion).

Now if X (⊂ n) is projection and i : X → n is the inclusion, then we obtain i∗ (1) =  (1)|X on
X . Moreover if hFS is the Fubini-Study hermitian metric then i∗h|FS has curvature i∗ωFS =ωFS|X (up
to a factor of i

2π). But we showed previously that the restriction of a Kähler metric is also a Kähler
metric (see Proposition 4.1) and soωFS|X is a Kähler metric on X . Thus  (1)|X → X is also positive.

We now turn to the algebro-geometric analogue.

6.1. Ampleness.

If X is a compact complex manifold, one cannot embed X in n for any n, as X has no non-constant
holomorphic functions (essentially by Liouville’s theorem). So instead the idea is to use (holomor-
phic) sections of line bundles to embed X instead in some n.

So let L→ X be a holomorphic line bundle.
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Definition 6.9. A trivialisation of L over U ⊂ X is a ξ ∈  ∗(L)(U), i.e. a nowhere vanishing
section (recall  ∗(L) is non-vanishing sections, not the dual!).

So let s0, . . . , sn ∈ H0(X , L) be global sections and suppose for all x ∈ X , there is an s j with s j(x) ∕= 0.
Let ξ be a trivialisation of L over some U ⊂ X . So then s j = ξ f j , for some f j ∈  (U). Then note for
each x ∈ X , for some j we have s j(x) ∕= 0, and so as ξ is never zero, we also have f j(x) ∕= 0 for some
j. Hence:

[ f0(x) : · · · : fn(x)] ∈ n

as not all the s j are 0.

We claim that this element of n is independent of the choice of ξ. Indeed, if ξ̃ is another trivialisation
then ξ̃= gξ for some g ∈  ∗(U), and then

[ f0(x) : · · · : fn(x)] = [g(x) f0(x) : · · · : g(x) fn(x)]

and this shows that the point is independent of ξ. We will denote this point by:

[s0 : · · · : sn(x)] ∈ n.

Definition 6.10. We say that L is basepoint free if for all x ∈ X , ∃s ∈ H0(X , L) with s(x) ∕= 0.

Thus if L is basepoint free, after choosing a basis (si)ni=0 of H0(X , L) we obtain a map ϕL : X → n

given by:
ϕL(x) := [s0(x) : · · · : sn(x)].

Definition 6.11. We say a holomorphic line bundle L is very ample if ϕL is an embedding (for
some choice of basis of H0(X , L)).

Definition 6.12. We say L is ample if L⊗k = L ⊗ · · ·⊗ L  
k times

is very ample for some k ∈ >0.

Note: These are independent of the choice of basis: any two bases are related by an element ν of
GL(n+ 1). Then ν induces a biholomorphism of n, and X → ν∗X using the two bases.

When L is very ample, using the embedding ϕL we have ϕ∗L (1) ∼= L (indeed, if z0 is viewed as a
global section of  (1)→ n, then ϕ∗Lz0 is a global section of L). Hence:

L is very ample ⇐⇒ ∃ an embedding i : X → n with i∗ (1)∼= L

(this is how ampleness with defined earlier - see Definition 4.1).

Thus L is ample if L⊗k has enough global sections such that (for k≫ 0):

(i) L⊗k is basepoint free

72



Complex Manifolds Paul Minter

(ii) ϕL⊗k is injective: if x ∕= y ∈ X , ∃s ∈ H0(X , L⊗k) with s(x) ∕= s(y)

(iii) dϕL⊗k is injective (the usual thing for an embedding).

(By the inverse function theorem, this is equivalent to X being biholomorphic to a submanifold of
n).

Lemma 6.4. If L→ X is ample, then L is positive.

Proof. If L is ample then L⊗k is very ample for some k > 0, and hence L⊗k ∼= ϕ∗L⊗k (1) with ϕL⊗k :

X → n an embedding. Hence L⊗k is positive, i.e. has a hermitian metric h with curvature i
2π being

Kähler (just from pulling back that on n).

So we just need to show: L⊗k positive⇒ L positive. Indeed, let ξ be a trivialisation of L over U ⊂ X .
Then ξ⊗k is a trivialisation of L⊗k. Then define a metric on L by:

|ξ|h := |ξ⊗k|1/kh .

This characterises h, as ξ is a trivialisation (i.e. any other trivialisation differs by a non-zero function,
and this is linear in the correct way).

The curvature is i
2π FD =

i
2π∂ ∂ log(h) (as working with line bundles) for h is relative to the curvature

i
2π F1/k of h1/k by:

i
2π

F1/k =
i

2π
∂ ∂ log(h1/k) =

1
k
· i

2π
∂ ∂ log(h)

which is seen clearly in a trivialisation (as the metric is determined by functions). Lastly, note that
1
k · i

2π FD is Kähler, so we are done.

□

We are working towards the following result, which is the converse to Lemma 6.4. It tells us exactly
when a compact complex manifold is projective.

Theorem 6.1 (The Kodaira Embedding Theorem). Let X be a compact complex manifold, and
L→ X a positive line bundle. Then L is ample.

Proof. We will build up to this. □

This then has the following important corollary:

Corollary 6.2 (Characterisation of Projective). Let X be a compact complex manifold. Then:

X is projective ⇐⇒ X admits a line bundle L with c1(L) a Kähler class.
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Proof. Follows from Theorem 6.1. □

To prove these, we need to return to the cohomology theory of line bundles, via Hodge theory.

So let (X ,ω) be a compact Kähler manifold and let (E, h) be a hermitian holomorphic vector bundle.
We then obtain a hermitian metric on Λp,qT ∗X through ω and hence on Λp,qT ∗X ⊗ E. We denote
this metric by 〈·, ·〉.

h also gives a conjugate linear map (or isomorphism - via the natural pairing) and so h gives E ∼= E∗

(although this is not an isomorphism in our strict sense earlier).

Definition 6.13. Define a Hodge star operator ∗E : Λp,qT ∗X ⊗ E → Λn−p,n−qT ∗X ⊗ E, defined
by:

∗E(ϕ ⊗ s) := ∗ϕ ⊗ h(s) = ∗ϕ ⊗ h(s)

We then have (α,β)dVol = α ∧ (∗Eβ), where here ∧ means the wedge product on the form part of
α,∗Eβ and the evaluation E ⊗ E∗→  on the bundle part (i.e. this is how we define ∧ on elements
of Λp,qT ∗X ⊗ E).

Definition 6.14. We define ∂
∗
E : p,q

 (E)→
p,q−1
 (E) by:

∂
∗
E := −∗E∂ E∗E .

When E =  is trivial, these definition agree with the previous Hodge star operator, since then

∗ (ϕ) = ∗ϕ = ∗ϕ

and so

∂
∗
 (ϕ) = −∗∂ ∗(ϕ) = −∗∂ (∗ϕ) = −∗(∂ ∗ϕ) = −(∗∂ ∗)ϕ

as desired. Then we can define harmonic forms with respect to ∂
∗
E , ∂ E analogously to before:

Definition 6.15. Set ∆E := ∂
∗
E∂ E + ∂ E∂

∗
E . We say that α ∈ p,q

 (E) is harmonic if ∆Eα= 0.

We write p,q(X , E) := {α ∈ p,q
 (E) :∆Eα= 0}.

Then p,q
 (E) admits an L2-inner product via:

〈α,β〉L2 :=



X
〈α,β〉 dVol.

We now see how we can mimic all the Hodge theory from before to Hodge theory of bundles.
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Lemma 6.5. ∂
∗
E is the L2-adjoint of ∂ E , and ∆E is self-adjoint. Moreover,

∆Eα= 0 ⇐⇒ ∂ Eα= 0 and ∂
∗
Eα= 0.

Proof. Similar the the case before (which was essentially just when E was the trivial bundle  - see
Lemma 4.2 and Lemma 5.1). □

Theorem 6.2 (Hodge Decomposition for Bundles). ∃ an L2-orthogonal decomposition:

 p,q
 (E) = p,q(X , E)⊕ ∂ E p,q−1

 (E)⊕ ∂ ∗E
p,q+1
 (E).

Thus p,q(X , E) is finite dimensional.

Proof. Similar to the case when E is trivial (see Theorem 5.2). □

Definition 6.16. The Dolbeault cohomology classes with respect to a bundle E are:

H p,q

∂
(X , E) :=

ker

∂ E : p,q

 (E)→
p,q+1
 (E)


Image

∂ E : p,q−1

 (E)→ p,q
 (E)
 .

Theorem 6.3 (Dolbeault’s theorem for bundles). We have H p,q

∂
(X , E) ∼= Hq(X ,Ωp ⊗ E), where

Ωp is the sheaf of holomorphic p-forms.

Proof. Similar to the case when E is trivial (see Theorem 2.2). □

Lemma 6.6. The natural map  p,q(X , E) → H p,q

∂
(X , E), α → α, is an isomorphism. Thus any

(p, q)-Dolbeault class with respect to a bundle has a unique harmonic (p, q)-form representing the
class. Thus:

 p,q(X , E)∼= H p,q

∂
(X , E)∼= Hq(X ,Ωp ⊗ E).

Proof. Similar to the case when E ∼=  is the trivial bundle (see Corollary 5.1). Once again note that
this map is well-defined because if we have ∆Eα= 0, then ∂ Eα= 0 (from Lemma 6.5).

□

As before this Lemma 6.6 is how we can use Hodge theory to understand Dolbeault cohomology.
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Now let D be the Chern connection associated to (E, h). Then in a local holomorphic frame, D = d+Θ,
for Θ a matrix of (1, 0)-forms.

Proposition 6.5. Given x ∈ X , ∃ a holomorphic frame (e j) j and coordinates (zl)l such that

〈e j(z), ek(z)〉h = δ jk +O(|z|2).

Proof. None given - similar to the proof of Proposition 4.3. See Demailly “Complex Analytic and
Differential Geometry”, Proposition 12.10, Chapter VI. □

Definition 6.17. The (e j) j found in Proposition 6.5 are called a normal frame.

Thus for the Chern connection, one can find a holomorphic frame which is orthonormal to first order.

Definition 6.18. Define L : p,q
 (E)→

p+1,q+1
 (E) by: for ϕ ∈ p,q

 (X ) and s ∈ 0(E):

L(ϕ ⊗ s) := (ω∧ϕ)⊗ s = L(ϕ)⊗ s

where in the last expression L is the Lefschetz operator from before (Definition 4.12).

Similarly define Λ : p,q
 (E)→

p−1,q−1
 (E) by:

Λ(ϕ ⊗ s) = (Λ(ϕ))⊗ s

where Λ is the inverse Lefschetz operator as before (Definition 4.12).

i.e. this is just saying we can extend our previous definitions of L,Λ to this case by just acting on the
first component.

Recall the Kähler identities: [Λ, L] = (n − (p + q))id, [Λ,∂ ] = −i∂
∗
. The first extends directly to

bundles, but the second changes as follows:

Lemma 6.7 (Nakano Identity). Let D be the Chern conection. Then

[Λ,∂ E] = −i

D1,0
∗

where D1,0 := −∗E D1,0
E∗ ∗E and where D1,0

E∗ is the projection of the Chern connection on E∗ onto the
(1, 0)-component.

Proof. Let τ ∈ p,q
 (E) be given in a normal frame as:

τ=


j

ϕ j ⊗ e j
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where ϕ j ∈ p,q
 (U). Then one checks

Dτ=


j

dϕ j ⊗ e j +O(|z|)

and so
∂ Es = D0,1s =


j

∂ ϕ j ⊗ e j +O(z)

and 
D1,0
∗
τ=


j

∂ ∗ϕ j ⊗ e j +O(|z|)

as ∗E = ∗ + O(|z|), using that the frame is normal. The result then follows from the usual Kähler
identity [Λ,∂ ] = −i∂ ∗.

□

Remark: Huybrechts’ proof of this (which is Lemma 5.2.3 in his book) seems incorrect as it uses a
holomorphic orthogonal frame (instead of a normal frame) which in general does not exist.

Lemma 6.8.

D1,0
∗

is the L2-adjoint of D1,0, i.e.


D1,0
∗
α,β


L2 =

α, D1,0β


L2 .

Proof. Similar to the case when E ∼=  is trivial. □

Lemma 6.9. Let α ∈ p,q(X , E) be harmonic. Then:

(i) i〈(FDΛ)(α),α〉L2 ≤ 0

(ii) i 〈(ΛFD)(α),α〉L2 ≥ 0.

Proof. (i): We have Λα ∈ p−1,q−1
 (E) and so FDΛα ∈ p,q

 (X , E), and so the statement makes sense.
Here FD acts on α by wedging in the form part and evaluation End(E)× E→ E on the bundle part.

As D is the Chern connection, FD = D1,0∂ E + ∂ E D1,0. But α is harmonic and so ∂ Eα = 0, ∂
∗
Eα = 0.

Thus

i〈FDΛα,α〉L2 = i

D1,0∂ EΛα,α


L2
+ i

∂ E D1,0Λα,α


L2

= −

∂ EΛ, i

D1,0
∗
α


L2
+ i

D1,0Λα,∂

∗
Eα


L2  
=0 as ∂

∗
Eα=0

=

∂ EΛα, [Λ,∂ E]α


L2

by Nakano identity

= −∂ EΛα2L2 ≤ 0 as ∂ Eα= 0
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where in the second line the negative sign on the first term comes from the inner product being
conjugate linear in the second component.

(ii): Similarly we have

〈iΛFDα,α〉L2 = i

[Λ,∂ E]D

1,0α,α


L2
+ i

∂ EΛD1,0α,α


L2
using that ∂ Eα= 0

= i

−i

D1,0
∗

D1,0α,α


L2 + i

ΛD1,0α,∂

∗
Eα


  
=0 as α∗Eα=0

using the Nakano identity

= D1,0α2L2

≥ 0

and so we are done. □

Theorem 6.4 (Kodaira Vanishing Theorem). Let L be positive. Then for p+ q > n we have

Hq(X ,Ωp ⊗ L) = {0}.

Proof. Since L is positive we can find a hermitian metric h on L such that i
2π FD is Kähler. Thus

Lα= i
2π FD ∧α.

So let α ∈ p,q(X , L). Then [Λ, L] = −H. So by Lemma 6.9,

0≤


i
2π
[Λ, FD]α , α


L2
= 〈[Λ, L]α] =,α〉L2 = (n− (p+ q))α2L2

and thus if p + q > n we must have α = 0. Since  p,q(X , L) = {0} here. But then we are done as
 p,q(X , L)∼= Hq(X ,Ωp ⊗ L) by Lemma 6.6.

□

Another useful vanishing theorem is “Serre vanishing”:

Theorem 6.5 (Serre Vanishing). Suppose E → X is a holomorphic vector bundle, and suppose
L→ X is positive. Then for all k sufficiently large we have:

H j(X , E ⊗ L⊗k) = {0}.

Proof. The proof uses similar techniques to the Kodaira vanishing theorem. □

6.2. Blow Ups.

Definition 6.19. The blow-up of a complex manifold X at a point p∈X is a complex manifold
π : BlpX → X with π−1(p)∼= n−1 =: E a divisor and π :


BlpX

\E→ X\{p} an isomorphism.
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Let ∆ be the unit disc in n. Let z1, . . . , zn be coordinates on n and l = [l1 : · · · : ln] homogeneous
coordinates on n−1.

Define then:
Bl0∆ := {(z, l) : z j lk = zk l j for all j, k} ⊂∆× n−1.

This consists of pairs (z, l) with z ∈ l, since z ∈ l if and only if z∧ l = 0 (the wedge product of vectors
in n, i.e. this just says z is parallel to the line l if and only if the wedge product z ∧ l vanishes).

If one replaces ∆ with n, this is exactly how we constructed  (−1)→ n−1, and so as  (−1) is a
complex manifold, we see by the same reasoning that Bl0∆ is a complex manifold.

The map π : Bl0∆→∆ is given by (z, l) → z. Noting that a non-zero point z is contained in a unique
line, we have that π : Bl0\{π−1(0)} → ∆\{0} is an isomorphism. Moreover π−1(0) consists of all
lines, and so is isomorphic to n−1.

Now more generally, let X be a complex manifold and p ∈ X . Then we know we can find local coordi-
nates so that z : U →∆ ⊂ X is a biholomorphism, i.e. a neighbourhood of p in X is biholomorphic to
a disc in n. The restriction π : Blp∆\E → ∆\{p} gives an isomorphism between a neighbourhood
of E in Blp∆ and of p in X . So we can construct BlpX as:

BlpX = (X\{p})

π

Blp∆

i.e. it is obtained by replacing p with Blp∆. One obtains π : BlpX → X with the desired properties.

Definition 6.20. We call E = π−1(p)∼= n−1 the exceptional divisor.

We will quickly show that the exceptional divisor E is independent of the choice of coordinates on
∆ (this was z above).

So let (z′j) j , z′j = f j(z) be another choice of coordinates with f j(0) = 0 (so the origin/ image of p is

preserved). LetBl0∆ be the blow up in these new coordinates. Then the isomorphism

f : Blp∆\E
∼=→Blp∆\Ẽ

extends to an isomorphism f : Blp∆→Blp∆ by setting f (0, l) := (0, l̃), where

l̃ j =


k

∂ fk(0)
∂ z j

lk

[Exercise to check the details of this]. Similarly the identification E ∼= 

TpX (1,0)

, sending (0, l) →

j l j
∂
∂ z j

, is independent of the choice of coordinates (i.e. the intuition here is that for the blow up
at p we simply replace p by all the tangent vectors at p). Thus as this f is an isomorphism we see
the blow up is independent of the choice of coordinates z.

□

Now let  (E) be the line bundle associated to the divisor E. Then  (E) can be identified with
(z,l) l → Blp∆ (LHS being a disjoint union as we want to count all zeros in the lines separately), as
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this admits a section
t(z, l) = ((l, z), z)

which vanishes along E with multiplicity one. Thus  (E) ∼= p∗( (−1)) where p : Blp∆ → n−1 is
the natural projection, since Blp∆ ⊂ n × n−1. It follows that  |E ∼=  (−1), which is then true for
any complex manifold.

Now  (E)∗ ∼=  (−E) has fibre over (z, l) ∈ Blp∆ given by the space of linear functionals on the line
l ⊂ n, and so  (−E)|E is the hyperplane bundle  (1) on n−1. Then as E ∼= 


TpX (1,0)


we get an
isomorphism

(‡) H0 (E, (−E)|E)∼= T ∗p X (1,0).

Now if f ∈  (∆) vanishes at p (= 0 in coordinate chart), the function π∗ f vanishes along E, and so
it can be considered as a section of  (−E)→ Blp∆. The isomorphism (‡) is then

H0(E, (E)|E)
∼=→ T ∗p∆

(1,0) sending π∗ f −→ d fp.

Thus the diagram:

H0

Blp∆, (−E)


H0 (E, (−E)|E)

H0(∆,p) T ∗p X (1,0)

rE

dp

pullback ∼=

commutes, where rE is the restriction to E map. Here p is the ideal sheaf of p, i.e.

p(U) := { f ∈  (u) : f (p) = 0}
i.e. the sheaf of holomorphic functions vanishing at p.

Proposition 6.6. Let F be any line bundle on X and let L → X be positive. Then for any integers
d1, . . . , dl > 0, for all k sufficiently large the line bundle

π∗

L⊗k ⊗ F

⊗

−


j

d j E j



is positive on Blp1,...,pl
X , where the E j are the exceptional divisors corresponding to blowing up at

p j .

In particular this is true for F =  the trivial line bundle.

Proof. In a neighbourhood p j ∈ U j ⊂ X , the blow up is Blp j
U j ⊂ U j × n−1, and

 (E j)∼= p∗j ( (−1)).

We give  (E j) a metric via the pullback of the Fubini-Study metric on n−1. Using a partition of

unity, this produces metrics (by tensor products) on 


j −d j E j


.

Locally near E j , the curvature is −d j(2πi)p∗jωFS. Thus this metric is strictly positive on E j (i.e. on

vectors tangent to E j) and semi-positive locally. So let i
2π FD be the curvature, and let ω be the

curvature of a positive metric on L (ω Kähler in particular). Let α be the curvature of a metric on F .
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Then π∗ω is trivial along the exceptional divisor E, and positive everywhere else. Thus

π∗(kω+α) +
i

2π
FD

is Kähler for all k sufficiently large, and this is the curvature of a metric on the desired line bundle,
which shows that it is positive.

□

Exercise: For a complex manifold X set KX := ΛnT ∗X (1,0). Then show that

KBlpX
∼= π∗KX ⊗ ((−n+ 1)E).

6.3. The Kodaira Embedding Theorem.

Theorem 6.6 (Hartog’s Extension Theorem). Let U ⊂ n be open, and n ≥ 2. Let f : U\{z1 =
z2 = 0}→  be holomorphic. Then ∃ a unique holomorphic extension f̃ : U →  of f .

Proof. None given - see Huybrechts Proposition 2.16. □

Exercise: Let L ∈ Pic(X ) and let Y ⊂ X be a submanifold of codimension ≥ 2. Then show that
the restriction H0(X , L)→ H0(X\Y, L) is an isomorphism. [This is just a geometric form of Hartog’s
extension theorem.]

Now onto one of the main results of this course, which we mentioned earlier:

Theorem 6.7 (The Kodaira Embedding Theorem). If X is a compact complex manifold and L→ X
is positive, then L is ample.

Proof. Let Nk + 1= dim

H0(X , L⊗k)

. We need to show that ∃k > 0 such that

(i) For all x ∈ X , ∃s ∈ H0(X , L⊗k) with s(x) ∕= 0.

(ii) For all x , y ∈ X , ∃ a section s ∈ H0(X , L⊗k) with s(x) ∕= s(y).

(iii) For all x ∈ X , d(ϕL⊗k)x : Tx X → TϕL⊗k (x)Nk is injective, where ϕ :L⊗k : X → Nk is the map

ϕL⊗k(x) := [s0(x) : · · · sNk
(x)] ∈ Nk

defined previously (recall Definition 6.11).

So let L⊗k
x be the fibre of L⊗k at x ∈ X . (i) asks for H0(X , L⊗k)→ L⊗k

x to be surjective. We know that
there is a short exact sequence

0 L⊗k ⊗x L⊗k L⊗k
x 0
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where L⊗k ⊗x denotes sections of L⊗k which vanish at x . Then from the corresponding long exact
sequence in cohomology we see that ψ is surjective if H1(X , L⊗k ⊗ ) = {0}.

Similarly the short exact sequence

0 L⊗k ⊗x ,y L⊗k L⊗k
x ⊗ L⊗k

y 0

is related to (ii).

We will prove (ii), and then (i) is very similar. We pass from points to divisors (and hence line
bundles) by blowing-up. We have lots of vanishing theorems for divisors, so this is where we are
heading to try and prove these cohomology groups vanish.

Let X̃ be the blow-up of X at x and y , with exceptional divisors Ex , Ey . Set E = Ex + Ey , and let
L̃ = π∗L, where π : X̃ → X is the natural map (if dim(X ) = 1 then we set π = id and X̃ = X as
the divisors are just points and so we do not need to blow up points to divisors as they are already
divisors).

Consider the pullbackπ∗ : H0(X , L⊗k)→ H0(X̃ , L̃⊗k), which is injective. But then anyσ ∈ H0(X̃ , L̃⊗k)
induces a section σ ∈ H0(X\{x , y}, L⊗k), since X\{x , y} ∼= X̃\E, inducing σ ∈ H0(X , L⊗k). Thus in
fact π∗ is an isomorphism. [We have used Hartog’s theorem here].

By construction, L̃⊗k is trivial along Ex , Ey , i.e.

L̃⊗k|Ex
∼= Ex × L⊗k

x and L̃⊗k|Ey
∼= Ey × L⊗k

y .

So H0(E, L̃⊗k|E) ∼= L⊗k
x ⊕ L⊗k

y . Then if rE is the restriction H0(X̃ , L̃⊗k)→ H0(E, L̃⊗k|E) we have that
the following diagram

H0(X̃ , L̃⊗k) H0(E, L̃⊗k|E)

H0(X , L⊗k) L⊗k
x ⊕ L⊗k

y

rE

rx y

∼=

commutes. Thus it suffices to show that rE is surjective to obtain (ii). So choose k such that

L′ := L̃⊗k ⊗ K∗
X̃
⊗ (−E)

∼= π∗

L⊗k ⊗ K∗X

⊗ (−nE)

is positive (can do this by Proposition 6.6: here n= dim(X )). Then by the Kodaira vanishing theorem
(Theorem 6.4) we have

H1(X̃ , L̃⊗k ⊗ (−E)) = H1(X̃ , L′ ⊗ KX̃ ) = {0}.
So considering:

0 L̃⊗k ⊗ (−E) L̃⊗k L̃⊗k|E 0
rE

we see that rE : H0(X̃ , L̃⊗k)→ H0(E, L̃⊗k|E) is surjective, which proves (ii) near x , y .

So now we can use compactness to get a global statement. If ϕL⊗k is defined at x , y and ϕL⊗k(x) ∕=
ϕL⊗k(y), then the same is true for nearby points (by continuity). Thus we get an open cover of X
and so by compactness a finite open cover, and then we can apply the above (choosing a k on each
of the finitely many sets of the cover) to see that we can find N such that for all k ≥ N we have L⊗k

is basepoint free and injective, and so (ii) is established.
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We now prove (iii). Let ϕα : Uα ×→ L⊗k|Uα be a trivialisation of L⊗k. Then

d(ϕL⊗k)x : Tx X → TϕL⊗k (x)Nk is injective ⇐⇒ ∀v∗ ∈ T ∗x X (1,0), ∃s ∈ H0(X , L⊗k) with

sα = ϕ
∗
αs, s(x) = 0, dsα(x) = v∗

(here we view ϕL⊗k locally as (for s0(x) ∕= 0) a map X → Nk , y → (s1(y), . . . , sNk
(y)) ).

More intrinsically, let L⊗k ⊗ x be as before. Then if s ∈ L⊗k ⊗ k(U), ϕα,ϕβ are trivialisations of
L⊗k over U , and if sα = ϕ∗αs, sβ = ϕ∗β s, then we have

sα = ϕαβ sβ , dsα = dsβ ·ϕαβ + dϕαβ · sβ  
=0 as sβ (x)=0

= dsβ ·ϕαβ

which gives rise to a sheaf morphism dx : L⊗k ⊗ x → T ∗x X (1,0) ⊗ L⊗k
x (extra L⊗k

x from ϕαβ). Then
(iii) states that

dx : H0(X , L⊗k ⊗x)→ T ∗xX (1,0) ⊗ L⊗k
x is surjective for all x ∈ X

(or equivalently H1(X , L⊗k ⊗ 2
x ) = {0} for all x ∈ X ).

Now if σ ∈ H0(X , L⊗k) then σ(x) = 0 if and only if π∗σ = σ̃ vanishes along E (by Hartog’s extension
theorem), where X̃ = Blx X (i.e. σ̃ corresponds to the blow up at x). Thusπ∗ induces an isomorphism

H0(X , L⊗k ⊗x)→ H0(X̃ , L̃⊗k ⊗ (−E)).

We can identify

H0

E,

L̃⊗k ⊗ (−E)


E


= L⊗k

x ⊗ H0(E, (−E)|E)
= L⊗k

x ⊗ T ∗x X (1,0)

as L̃⊗k|E is trivial. Moreover the diagram

H0(X̃ , L̃⊗k ⊗ (−E)) H0

E,

L̃⊗k ⊗ (−E)


E



H0(X , L⊗k ⊗x) L⊗k
x ⊗ T ∗x X (1,0)

rE

dx

π∗ ∼= = id

commutes. Hence to prove dx is surjective, it is enough to prove that rE (the restriction map) is
surjective.

So taking k sufficiently large such that H1(X̃ , L̃⊗k ⊗  (−2E)) = {0} (by positivity and Kodaira van-
ishing), rE is surjective. Then one obtains a k which works for all x ∈ X by compactness, just as
before. Hence we are done.

□
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7. CLASSIFICATION OF COMPACT COMPLEX SURFACES

Remark: The book by Beauville is the recommended reference for the contents of this section and
for the classification of surfaces.

Definition 7.1. A Riemann surface is a compact complex manifold of dimension 1.

Let S be a Riemann surface. Then any (1, 1)-form on S is closed (as dim(S) = 2 so higher cohomol-
ogy groups vanish) and so S is Kähler, and H2(S,) = . Let α ∈ H2(S,) be Kähler with α= c1(L),
So by Kodaira embedding we know L is ample and so by Corollary 6.2 S is projective.

By Riemann-Roch, a line bundle L → S is ample ⇐⇒ deg(L) =


Sω =


S c1(L) > 0 for ω ∈ c1(L).
Then Riemann surfaces are classified by their genus g:

Then:

• For 1, K∗1 is ample,  (−1), c1(S) = c1(K∗S) is Kähler.

• For elliptic curves KS
∼= S and c1(S) = 0.

• For genus g ≥ 2, KS is ample and c1(S) is Kähler.

We wish to see if we can get similar classifications in higher dimensions.

7.1. Enriques-Kodaira Classification of Surfaces.

Let X be a compact surface. Set:

L1 · L2 =



X
ω1 ∧ω2 =



X
c1(L1)⌣ c1(L2)

for ω1 ∈ c1(L1),ω2 ∈ c1(L2). Then if  (D)∼= L1, so Z(s) = D for some s ∈ H0(X , L1), then

D · L2 =



X
ω1 ∧ w2 =



D
c1(L2) =



D
ω2.
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If E ⊂ BlpX is the exception divisor, then

E · E =


E
 (E)|E =


1

 (−1) = −1.

Given X , we can blow-up to get BlpX , a new compact complex surface. Conversely, the following
result tells us how to invert a blow up:

Theorem 7.1 (Castelnuovo). If 1 ∼= C ⊂ X has C ·C = −1, then ∃Y with X = BlpY and C is the
exceptional divisor of this blow-up.

Proof. None given. □

In practice, we classify minimal surfaces, which are those surfaces with no such C (i.e. those X
which are not the blow-up of something else).

Definition 7.2. We say ϕ : X → Y is meromorphic if ϕ : X\Z → Y is holomorphic for Z an
analytic hypersurface.

Definition 7.3. We say X , Y are bimeromorphic if there is a meromorphic ϕ : X → Y with
meromorphic inverse.

It turns out that all bimeromorphic maps between surfaces are compositions of blow-ups and blow-
downs.

Set Pr := dim

H0(X , K⊗r

X )

, called the plurigenera. These are a bimeromorphic invariant. We

define the Kodaira dimension K(X ) to be the growth of Pr in r. So:

• K(X ) = −∞ if Pr = 0 for all r.

• K(X ) = 0 if Pr ∈ {0, 1} for all r sufficiently large.

• K(X ) = 1 if ∃c with Pr < cr for all r sufficiently large.

• K(X ) = 2 otherwise.

In general we have:

K(X ) = lim sup
r→∞

log

dim

H0(X , K⊗r

X



log(r)
= lim sup

r→∞

log(Pr)
log(r)

.

Let us look at each case of K(X ).

• If K(X ) = −∞: All of these X are projective. The possible classes are:
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(i) Rational surface, 2,1 × 1 and Σn, with π : Σn → 1 such that π−1(x) ∼= 1 for all
x ∈ 1. In particular Σn has a C ⊂ Σn, C ∼= 1 with C · C = −n (this is what makes Σn
distinct from Σm for m ∕= n).

Remark: If K∗X is ample, then X is called Fano (→ del Pezzo surfaces), e.g. 2, 1×1,
Blp1,...,p8

2 for arbitrary distinct p1, . . . , p8.

(ii) Ruled surfaces of genus > 0: these have a map π : X → S with π−1(x) ∼= 1 for all x ,
with S a Riemann surface of genus ≥ 1.

• If K(X ) = 0: Not all of these are projective. The classes are:

(i) Abelian surfaces (complex tori), 2/Λ. These are projective if and only if the Hodge-
Riemann relations hold on Λ. Here KX

∼= X , H0(X ,X ) = 1. These can have no
divisors.

(ii) K3 surfaces: KX
∼= X . In general KX

∼= X is Calabi-Yau. Sometimes these can be
non-projective (they form a 20 dimensional family, and a 19 dimensional subspace is
projective).

Example: V ( f ) ⊂ 3 where f has degree 4.

(iii) Enriques surfaces: have K⊗2
X
∼= X , but KX

∼= X . These are of the form Y /2 for Y a
K3 surface.

• If K(X ) = 1: There is only one class here, of (some) elliptic surfaces, So π : X → S (S a
Riemann surface) such that π−1(x) is an elliptic curve for S\{p1, . . . , pk}. The other fibres
can be singular (and non-reduced). Here KX · KX = 0.

Not all elliptic surfaces have K(X ) = 1 though, e.g. 1 × E, for E an elliptic curve. Some
elliptic surfaces can be non-projective as well.

Aside: For π : X → B and F a general fibre, the Litaka conjecture is that we have k(X ) ≥
k(B) + k(F).

• If K(X ) = 2: These are “surfaces of general type”. These have KX ·KX > 0, and they are wild
and difficult to study/ They do have a nice moduli space (generalising g) by Giesecker
(the Kollär-Shepherd classification).

We don’t know, e.g. what their topology is (in general).

Now we quickly look at the non-Kähler case.

7.2. Non-Kähler Surfaces.

If b1 = dim(H2(X ,)) is even, then X is Kähler. Thus wlog we have b1 being odd.

• If K(X ) = 1: Can have non-Kähler elliptic surfaces.

• If K(X ) = 0: Two classes are:
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(i) Primary Kodaira surfaces. We construct these via taking an elliptic curve S and L → S
with deg(L) ∕= 0. Write L∗ = L\{0-section}. Then we have X = L∗/q for q an infinite
discrete cyclic subgroup of .

(ii) Secondary Kodaira surfaces. These are of the form Xsecondary = Xprimary/G, i.e. quotient
of a finite group G acting on a primary Kodaira surface Xprimary.

• If K(X ) = −∞: Then b1(X ) = 1. Then we have:

(i) If b2 = 0, then have Hopf surfaces and 2\{0}/G for G a discrete group which acts
freely on 2\{0}. In one, these are ( × )/G, for  the upper half-plane and G a
solvable discrete group. These have no divisors.

(ii) b2 = 1: these were classified by Nakamura (1984) and A Teleman (2005).

(iii) b2 > 1: still an open question! (as of March 2019). There is a guess however.

For dim(X ) ≥ 3, we try to reduce to K∗X or KX ample, or KX
∼= X (this is the “minimal model

program”). For KX ample the minimal model program is basically complete (Birkar-Cascini-Hacon-
McKernan paper).

“Most” 3-folds are not projective. “Most” complex 3-folds are not Kähler. The minimal model pro-
gram fails for non-Kähler 3-folds (example by Pelham Wilson).

End of Lecture Course
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